• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Bounce of a Squash Ball

Extracts from this document...


Investigating the Bounce of a Squash Ball

In this investigation I will be measuring the bounce of a squash ball and record the results in a table and on a graph with an aggression line.

There are a number of factors which could influence the bounce these include the following;

Type of surface

Angle of surface

Angle at which Ball is dropped

Material of Ball

Mass of Ball

Diameter of Ball

Temperature of Ball

Pressure of Air in Ball

Air Resistance

Height of Drop

Force used to Drop Ball

Acceleration Due to Gravity

Temperature of the Ball

To make the test fair, certain variables have to be kept fixed and at a constant otherwise the results would not be right and a conclusion cannot be drawn from the anomalous results.

Force used to Drop Ball

According to how much force is applied to drop the ball, it will bounce higher or less. If suitable equipment was available in the school, students may be able to automate the “dropping of the ball” process so that a machine drops it from a given height. This would eliminate the possibility of human error, as we would not be able to drop the ball with an equal force each time making the results unfair.

...read more.


Diameter of Ball

A larger ball with a larger diameter will have a bigger surface area meaning that when it hits the floor, more of its area will be in contact with floor at impact and this will affect its bounce back height. For this reason, to make the test fair, the same sized ball with the same diameter will be used.

Type of Surface

Different surfaces have different smoothness and changing the surface half way during the experiment will make the test unfair as some surfaces according to their smoothness will allow a nice, neat bounce whereas other surfaces will alter the bounce due to indentation in the surface and bumps etc. To make the test fair, all testing will be done on a bench surface throughout the experimenting procedure.

Angle of Surface

The angle of the surface at which the ball is bounced on will affect how it bounces back up and how far too. To overcome this, a surface, which is horizontally straight, will be chosen to experiment on. This same surface will then be used so that there will not be any change in its angle making the test fair.

Angle which Ball is dropped at

...read more.


lass="c4 c6">1







18 (room temp)



































The graph of the average results is over the page.

The results are what I expected them to be, the higher the temperature of the ball the higher the bounce, my hypothesis was correct. According to my results if the ball had been 80ºC then the average result would be a lot higher.


If I had measured the second bounce I would have found a difference as the energy would have been lost to sound and through the ground.

As the temperature raises the speed increases as does the pressure causing a greater bounce. The ball becomes deformed as it hits the ground as it changes direction. If I had time I would have done a second experiment and changed the height it was dropped from. I would expect the height of the first bounce to increase as I increased the height it freefall from. I also could have changed the mass of the ball while I changed the temperature to see if both have an effect on the bounce.

I believe the experiment was a success as I have gained no anonymous results in the table above.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Investigating factors that affect the bounce height of a squash ball

    5 star(s)

    Keep the ball temperature (room temperature) the same in each experiment, and carry out all experiments on the same day to prevent variations in room temp affecting the results. Surface onto which the ball is dropped Different surfaces may disperse energy at different rates, so different amounts of energy may

  2. The effect of the temperature on the viscosity of the syrup.

    so that only the change in temperature of the syrup will contribute to the viscous effect on the syrup. Repeating the experiment for each temperature three times will allow me to form an average, with a set of reliable and accurate results.

  1. What factors affect the bounce of a squash ball?

    least, there must be a temperature at which they would lose all their energy and stop moving, and the temperature could go no lower than this.' (Secondary Source-Encarta Encyclopaedia) The above theory is true of this experiment as when the squash ball was heated, the atoms inside the ball started

  2. Investigation into the effect of temperature on viscosity

    = 3.565 x 10-3m Volume= (given by 4/3 Pi r�) 4/3 Pi (3.565 x 10-3)� = 1.89 x 10-7 m� Density = 1.5 x 10-3 / 1.89 x 10-7 = 7936.5kg m-3 g= 9.81ms-2 s= 11cm --> 1.1 x 10-1 m r= 3.565x10-3m ?

  1. Bouncing Ball Experiment

    Temperature will not affect the balls bounce either as the experiment will be conducted at room temperature, thus not allowing the floor to get cold and in doing so alter its affect upon the ball on impact. The surface onto which the ball is dropped upon will be kept the same.

  2. Squash Ball and Temperature Investigation

    it is provided with more and more heat energy allowing them to move and collide faster and faster. This energy produce by the heat will account for the energy, which is lost as heat and sound. The top part of the graph is sketched evening out and is a much

  1. Factors affecting the bounce of a ball

    Repeat this procedure with all the other balls 4. Then repeat the procedure by dropping the ball from the 2m mark 5. The experiment may be repeated several times if time allows. Fair Test: ==> The size of all the balls used was the same with only slight variation.

  2. Examine the relationship between the height a ball is dropped from and the vertical ...

    When the ball hits the floor the floor then pushes up with the same force that the ball hit it with. As the ball falls the air resistance acting against it increases causing the rate of acceleration of the ball to decrease slightly until it reaches a point where the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work