• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

Investigating the factors that affect a bouncing ball.

Extracts from this document...

Introduction

Aim:

In this investigation I will be investigating the factors that affect a bouncing ball. The part of this wide subject I will be focusing on will be the percentage energy loss.

There are many factors that can be tested in how a ball bounces. All these could be investigated. I will be testing one, and this is the percentage energy loss, but from my results I will be able to compare other things too.

Planning

I will be looking to investigate the percentage energy loss, and this will involve letting a ball fall from a certain height and measure the following peaks of the following bounces. When the ball is dropped from a certain height, depending if the conditions a right, such as type of ball, surface and the starting height, the ball will drop and bounce to a peak lower than the starting height. Then the same will happen from this lower peak, the ball will again fall and will bounce to a lower peak lower than its beginning peak. From this we can already see that there will be a percentage energy loss, from personal experiences with sports and bouncing balls. But we are also aware that from the point of first release, the ball will have potential energy equal to mgh.

...read more.

Middle

Rebound PE (J)

Percentage loss (%)

2nd Rebound PE (J)

Percentage loss (%)

Mighty ball

595

450.5

24.2857

340

24.53

595

450.5

24.2857

374

16.98

595

459

22.857

374

18.52

Ping-Pong

175

120

31.42857

289

+140 (gain)

175

140

20

102.5

26.79

175

120

31.42857

97.5

60.42

Squash ball

164.5

32.9

80

4.7

85.71

164.5

28.2

83.465

7.05

75

164.5

37.6

77.142857

7.05

81.25

Golf ball

325.5

186

42.857

12.55

32.5

325.5

195.3

40

193.5

0.92

325.5

204.6

37.142857

116.25

43.18

Ball

Start height

(cm)

Rebound height (cm)

...read more.

Conclusion

The apparatus we used meant that the test was very quick so we had more time to do more tests and work out averages to make our results better.

To improve the accuracy of the method we could do a lot of changes. First of all the experiment had too much human error involved. When the ball bounced up of the table we had to just guess and say the nearest bounce height of the ball. We could have used a video camera to look at the exact peak for each bounce. Further expeiments could include experiments to see weather changing the contact surface has an impact of the percentage energy loss.

From the graphs there are seen to be no odd results. Energy loss as a pattern went up as the drop height increased. This is what we expected so the results are seen to be quite reliable.

I think I had enough results to draw a conclusion. This was because when doing the experiment I took enough readings, and was able to make averages. Overall the results were good and good conclusions were able to be made so in my mind the investigation was a success.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Energy transformation in a bouncing ball

    I will start the test from 1M high. Then hold the ruler vertically by the retort stand. Before I start, I will practice for few times to make sure that the experiment is more accurate.

  2. Investigating the relationship between drop height and bounce height when a ball is dropped.

    For example, at 1.0m, the average is 54.3cm, then at 1.2m, the average is 64.3cm; therefore making a 10cm increase in drop height 2 when you increase the height 1 by 20cm. This means that it loses about half its potential energy from its original drop height.

  1. Investigating the Percentage Energy Loss When a Ball Bounces

    For this investigation I will only change the height the ball is dropped from. I have chosen to use the height because, although all the variables are hard to accurately measure, height is easier than the others. Height is also a constant variable (unlike, type of ball or type of

  2. physics of the bouncing ball

    mass and the height to which the ball is lifted and can be expressed by the formula: G.P.E (gravitational potential energy) = Weight X Height = MGH You can see from the formula that the greater the weight and the higher the position of the ball, the greater the potential energy.

  1. Does the height a ball is dropped from affect its efficiency?

    Experiment I have followed my method again with an added change which was to repeat the drop more than once to get an accurate result, and this is what I have got: Number of bounces Height dropped from (cm) Height bounced to (cm)

  2. Heat loss

    The most common type is Ifra-red radiation; the type which the Sun has. I predict that having a shiny surface or covering the beaker with something shiny, will prevent radiation. This is because, as the heat in the object, in this case water, is trying to escape via radiation, this

  1. how and why temperature affects the bounce of a squash ball

    32cm 44cm The table shows the raw data collected from my investigation. One trend is immediately obvious; the rebound height increases with temperature. Analysis I feel that the table above is inappropriate for displaying my results so I'm going to process them into new tables.

  2. The Bouncing Ball Experiment

    I would say that my results are probably quite reliable because we made every effort to make the trial experiment fair, and my results turned out to be as I expected. My preliminary helped me find problems with my method, like getting the ball held at the right height, my

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work