• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21

investigating the factors that effect the resistance on a length of nichrome wire

Extracts from this document...

Introduction

Niall Bradley 12L

An Investigation to find the factors which affect the resistance of a length of nichrome wire

Aim: To find out the effect of changing the length and or thickness of a piece of Nichrome wire on resistance.

image12.jpgimage13.jpg

image24.pngimage35.jpg

image44.jpg

image00.png

Background Knowledge

There are four main factors that can affect the resistance; they are
the
length, this can affect it because the number of atoms is
different as the length changes making the rate of energy transfer
differ. Another factor is the
cross sectional area, this can affect it
as there is either less or more space as the area increases or
decreases for the atoms to collide with each other, furthermore the
material can affect it as each metal or substance have different
atoms and the atomic structure is different. Finally the
temperature can affect the resistance as the temperature increases the atoms energy increases giving it the power move faster whereas in colder conditions there is less energy and the opposite affect would take place, although temperature will be uncontrollable in the environment we will perform the experiment in. The other factors could be; Light, wire tension, gravity and magnetic influence.

Resistance is a force which opposes the flow of an electric current around a circuit so that energy is required to push the charged particles around the circuit.

...read more.

Middle

0

10

20

30

40

50

60

70

80

90

100

image05.png

Calculating thickness of wire

I worked out the thickness of one wire by getting the thickness of 100 wires and then dividing that number by 100

image40.png

Total thickness of 100 wires (coils) = 3.7cm

Thickness of 1 wire = thickness of 100 wires ÷ 100

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________

Safety measures:

  • I made sure there is no water or liquid near my workstation as I am working with electricity.
  • I made sure my workstation is clear and organised.
  • I made sure that my schoolbag is under the desk and out of the way

List of apparatus:

  • Nichrome wire
  • Ohm meter
  • Power source
  • Crocodile clips
  • Circuit wires
  • Meter ruler

Direct Method and Fair testing

I set up a circuit that consisted of a length of nichrome which was the only variable (other than thickness), a power supply which only provided 2 volts for safety, an ammeter that measured the current in amps, a voltmeter that measured the voltage in volts and a variable resistor that broke down the voltage for safety. The length of
wire was measured carefully against a metre ruler and 50cm
measured. The investigation started with 10cm was
measured with a 30cm ruler. The 10cm of wire was placed between
two crocodile clips which connected to the circuit with
connecting wires. Each measurement was straightened and measured over in accurate steps to make the investigation as fair as possible. For each length the voltage and the current was noted.

...read more.

Conclusion

In each method the slope of the graph was measured by selecting a reference point and measuring the Rise over the RUN to determine the gradient of the slope. From this value it can be shown how the K-factor of the nichrome wire can be calculated from the analysis below and this value compared with a reference known value obtained from researching on the WEB or a Physics text book.image43.png

image03.png

Evaluation

Working on the experiment has overall been an interesting and knowledgeable task. From obtaining the result that has matched my prediction, I can say that my background knowledge on the steps of the procedure was adequate. I am glad with how the experiment has been observed, studied and recorded for future use of physicists.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    1.0 = 0.02/0.2 = 0.1 Therefore; R = 1/0.1 = 10 > 150cm Gradient = 1.4 - 0.10 / 1.07 -0.08 = 0.02 / 0.26 = 0.077 Therefore; R = 1/0.77 = 13 > 200cm Gradient = 0.04 - 0.02 / 0.8 - 0.4 = 0.02 / 0.4 = 0.05

  2. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    Experiment Plan In this experiment I have to test the following factors for differentiation of resistance in a wire. * Length * Cross-section width * Series * Parallel Nichrome wire is being used in this experiment. However, it is well-known for its high resistance as it is mainly used as a heating element.

  1. Discover the factors affecting resistance in a conductor.

    a thick diameter as well as a thin diameter). I chose the diameters as 2.3 cm, 2cm, 1.5cm, 1.2cm, and 1cm. Also, for the ammeter/voltmeter experiment, the voltage from the power pack will remain constant throughout. 1.5cm, 2.3cm, and 1 cm were for the ammeter/voltmeter experiment. 2 cm and 1.2 cm were for the multimeter.

  2. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    40 50 60 70 80 90 100 Fair Test In my experiment I will keep these variables the same in order to keep my experiment fair. If I changed any one of these factors throughout my experiment I would find that it changes my results and the experiment is no longer a fair test.

  1. Does Increasing the Length of a Nichrome Wire affect its Resistance

    Results Here are my results that I took down during the experiment with my group. First we started at 10cm to see if the resistance increases as we go up the metre stick. We recorded the resistance in ohms. 10cm -1st Time Position Number on VR I - Amps (Current)

  2. Investigate the resistance of different wires and how at different lengths the voltage increases ...

    proves that their results were the most accurate and they also followed the same trend as min which proved that my data wasn't incorrect and again prove my prediction that as the length of the wire increases so does the resistance.

  1. Length vs Resistance

    The temperature of the wire would also have to be controlled, so the current cannot go above 1A. Finally, we would also have to make sure that the purity of the wires was the same, meaning that the amount of the material in each of the different wires would have

  2. How does the resistance of Nichrome wire change as its length changes?

    double resulting in twice the number of collisions slowing the electrons down and increasing the resistance. My graph should show that the length is proportional to the resistance. Scientific Knowledge Resistance is a force, which opposes the flow of an electric current around a circuit so that energy is required to push the charged particles around the circuit.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work