• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6

# Investigating the heat of combustion of a series of Alcohols

Extracts from this document...

Introduction

Investigating the heat of combustion of a series of Alcohols

## Background

Many countries in the world burn alcohols as a source of fuel. They do this because it is a good clean source of energy and heat.

In this experiment I will be trying to find out the amount of energy produced when different alcohols are burned.

I will be using five different alcohols for the experiment.  These are Ethanol, Propanol, Butanol, Pentanol and Hexanol.  Each one has a different number of carbon atoms arranged in the form of a chain.

## Prediction

I predict that as the length of the chain of the alcohol increases then so will the energy given off during combustion.  More energy will be given out in the form of heat as shown in the calculations below.  This also means that much more heat will be lost to the environment.

This is usually recorded as the heat of combustion of a molecule.  A bond energy is the energy taken to make or break a bond between two atoms.

## Ethanol

C2H5OH = 46g

Ethanol        +        Oxygen                Water                +        Carbon Dioxide

C2H5OH        +        3O2                        3H2O                +        2CO2

Bond

Energies

C – H = 5 X 435 = 2175                        H – O = 6 X 464 = 2784

C – O = 1 X 336 = 336                        C – O = 8 X 336 = 2688

O – H = 1 X 464 = 464

C – C = 1 X 346 = 346

O = O = 3 X 497 = 1491

Total Energy in = 4812 kJ                        Total Energy out = 5472 kJ

Energy Released = 4812 – 5472 = -660 kJ

When a bond breaks, energy is taken in so that it has enough energy to break the bond.

Middle

O = O = 15 X 497 = 7455

Total Energy in = 21393 kJ                        Total Energy out = 24576 kJ

Energy Released = 21393 – 24576 = -3183 kJ

-3183 = -1591.5 kJ

2

## Hexanol

C6H13OH = 102g

Hexanol        +        Oxygen                Water                +        Carbon Dioxide

C6H13OH        +        9O2                        7H2O                +        6CO2

C – H = 13 X 435 = 5655                        H – O = 14 X 464 = 6496

C – O = 1 X 336 = 336                        C – O = 24 X 336 = 8064

O – H = 1 X 464 = 464

C – C = 5 X 346 = 1730

O = O = 9 X 497 = 4473

Total Energy in = 12658 kJ                        Total Energy out = 14560 kJ

Energy Released = 12658 – 14560 = -1902 kJ

These results are negative because there is more energy given off in the reaction than is taken in.  Therefore energy is lost to the environment.  This creates a negative amount of energy left in the substance at the end of the experiment. The results on the graph are positive because I changed it from the negative to a positive.  This was possible because I assumed that theoretically all of the energy from the burning alcohol is being transferred to the water.  This makes it a lot easier to compare the theoretical results with the practical results.

As preliminary work to this experiment I had already done the experiment once with Ethanol.  I did, therefore, know how to do the experiment safely and properly.

## Method

Equipment needed: 0.5g of Ethanol, Butanol, Propanol, Pentanol, Hexanol; Lighted Splint; Crucible; Clamp stand; Clasp; Thermometer; Metal Can; water.

1. Set up the experiment as shown in the diagram below.
1. Measure out 0.5g of Ethanol and place this into a crucible.

Conclusion

Weight of one mole of alcohol (g)

Predicted heat loss when burnt (kJ/mole)

Actual heat lost when burnt (kJ/mole)

Ethanol

2

46

660

386.4

Propanol

3

60

970.5

504

Butanol

4

74

1281

621.6

Pentanol

5

88

1591.5

813.12

Hexanol

6

102

1902

942.48

The table shows that there is a definite link between the predicted and actual amount of heat lost by the burning of the alcohols.

## Evaluation

The experiment went very well, as there were very few anomalous results.

The experiment could be easily improved because during the experiment, a lot of heat was lost to the environment.  This meant that the water didn’t heat up as much as it should have done.  This is the reason why the results for the experiment are shown as giving off less energy than predicted.

This heat loss could be minimised through the use of a bomb calorimeter.  This would trap all of the heat produced inside a container, which is inside a water bath.  The heat is then passed through a copper coil, which is also suspended in the water.  This creates the maximum amount of contact with the water possible so more heat is transferred.  The apparatus also contains a stirrer so that the water heated up by the experiment doesn’t stay around the container and copper coil.  This also helps to maximise the contact between the water and the energy from the experiment.

The evidence shown in the experiment shows that my prediction that the bond energies needed and given will increase as the length of the chain of carbons increases.  The conclusions and the graph I made from the experiment also support my prediction.

Bibliography

1. Nuffield Co-ordinated Sciences - Chemistry

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Electricity and Magnetism essays

1. ## Investigation into Energy Released From Burning Various Alcohols.

4 star(s)

I will change the type of alcohol so that I can compare them. I will try to keep the isomers of the alcohol as all the same type, i.e. all 1-ol; however this may prove difficult due to availability. I will also keep things such as time left to burn constant throughout each attempt.

2. ## To investigate which fuel gives out the most energy when burnt. We are burning ...

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Butanol Butanol + oxygen --> carbon dioxide + Water C4H9OH + 602 --> 4CO2 + 6H20 Bonds Broken 9 X C-H (9 X 410)

1. ## Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

In my experiment I only found one anomalous result, this individual was much higher than the results I gained in the two other tests and also what was expected. I feel this happened because I might have not checked that the variables were not set correctly, such as the current

2. ## Measuring the specific heat capacity of water

C =18360 / (0.425 x 10) C = 4320 j/kg�C We can check this by using the graph to find the specific head capacity; again we will use the formula: Q = M x C x ? ?. P x T = M x C x ?

1. ## Finding a material's specific heat capacity

As many repeats as possible will be made. * Finally, the mass of the copper block will be recorded after measuring it with an accurate electric balance. Once all the data has been collected, it will be tabulated. Average percentage errors will be calculated for all measurements and figures quoted.

2. ## Investigation to see the relationship between actual and theoretical energy released when burning different ...

energy than Propan-1-ol, which needs more energy to break its bonds so it has less to give off, as they both make the same products. I calculated the bond energies for each of the products and reactants in each experiment, for each alcohol.

1. ## Comparing the Energy Released By combustion of Different Alcohols

Some of the heat will be lost by being blown away and some energy will take the form of light. PRELIMINARY INVESTIGATION * How high do I place the calorimeter above the burner? I found that a decent sized flame was 4cm and therefore I clamped the calorimeter 7cm above the top of the burner.

2. ## Combustion of Alcohols

If glass is used, then it will retain more heat before passing it on, thus the water will not get as much heat to start of with, than the alcohol is producing, thus giving misreading due to experimental inaccuracy, as glass is a reasonably good insulator.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to