• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the heat of combustion of a series of Alcohols

Extracts from this document...


Investigating the heat of combustion of a series of Alcohols


Many countries in the world burn alcohols as a source of fuel. They do this because it is a good clean source of energy and heat.

In this experiment I will be trying to find out the amount of energy produced when different alcohols are burned.

I will be using five different alcohols for the experiment.  These are Ethanol, Propanol, Butanol, Pentanol and Hexanol.  Each one has a different number of carbon atoms arranged in the form of a chain.


I predict that as the length of the chain of the alcohol increases then so will the energy given off during combustion.  More energy will be given out in the form of heat as shown in the calculations below.  This also means that much more heat will be lost to the environment.

This is usually recorded as the heat of combustion of a molecule.  A bond energy is the energy taken to make or break a bond between two atoms.


C2H5OH = 46g

Ethanol        +        Oxygen                Water                +        Carbon Dioxide

C2H5OH        +        3O2                        3H2O                +        2CO2



C – H = 5 X 435 = 2175                        H – O = 6 X 464 = 2784

C – O = 1 X 336 = 336                        C – O = 8 X 336 = 2688

O – H = 1 X 464 = 464

C – C = 1 X 346 = 346

O = O = 3 X 497 = 1491

Total Energy in = 4812 kJ                        Total Energy out = 5472 kJ

Energy Released = 4812 – 5472 = -660 kJ

When a bond breaks, energy is taken in so that it has enough energy to break the bond.

...read more.


O = O = 15 X 497 = 7455

Total Energy in = 21393 kJ                        Total Energy out = 24576 kJ

Energy Released = 21393 – 24576 = -3183 kJ

-3183 = -1591.5 kJ



C6H13OH = 102g

Hexanol        +        Oxygen                Water                +        Carbon Dioxide

C6H13OH        +        9O2                        7H2O                +        6CO2

C – H = 13 X 435 = 5655                        H – O = 14 X 464 = 6496

C – O = 1 X 336 = 336                        C – O = 24 X 336 = 8064

O – H = 1 X 464 = 464

C – C = 5 X 346 = 1730

O = O = 9 X 497 = 4473

Total Energy in = 12658 kJ                        Total Energy out = 14560 kJ

Energy Released = 12658 – 14560 = -1902 kJ

These results are negative because there is more energy given off in the reaction than is taken in.  Therefore energy is lost to the environment.  This creates a negative amount of energy left in the substance at the end of the experiment. The results on the graph are positive because I changed it from the negative to a positive.  This was possible because I assumed that theoretically all of the energy from the burning alcohol is being transferred to the water.  This makes it a lot easier to compare the theoretical results with the practical results.

As preliminary work to this experiment I had already done the experiment once with Ethanol.  I did, therefore, know how to do the experiment safely and properly.


Equipment needed: 0.5g of Ethanol, Butanol, Propanol, Pentanol, Hexanol; Lighted Splint; Crucible; Clamp stand; Clasp; Thermometer; Metal Can; water.

  1. Set up the experiment as shown in the diagram below.
  1. Measure out 0.5g of Ethanol and place this into a crucible.
...read more.


Weight of one mole of alcohol (g)

Predicted heat loss when burnt (kJ/mole)

Actual heat lost when burnt (kJ/mole)


























The table shows that there is a definite link between the predicted and actual amount of heat lost by the burning of the alcohols.


The experiment went very well, as there were very few anomalous results.

The experiment could be easily improved because during the experiment, a lot of heat was lost to the environment.  This meant that the water didn’t heat up as much as it should have done.  This is the reason why the results for the experiment are shown as giving off less energy than predicted.

This heat loss could be minimised through the use of a bomb calorimeter.  This would trap all of the heat produced inside a container, which is inside a water bath.  The heat is then passed through a copper coil, which is also suspended in the water.  This creates the maximum amount of contact with the water possible so more heat is transferred.  The apparatus also contains a stirrer so that the water heated up by the experiment doesn’t stay around the container and copper coil.  This also helps to maximise the contact between the water and the energy from the experiment.

The evidence shown in the experiment shows that my prediction that the bond energies needed and given will increase as the length of the chain of carbons increases.  The conclusions and the graph I made from the experiment also support my prediction.


  1. Nuffield Co-ordinated Sciences - Chemistry

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Investigation into Energy Released From Burning Various Alcohols.

    4 star(s)

    I will change the type of alcohol so that I can compare them. I will try to keep the isomers of the alcohol as all the same type, i.e. all 1-ol; however this may prove difficult due to availability. I will also keep things such as time left to burn constant throughout each attempt.

  2. To investigate which fuel gives out the most energy when burnt. We are burning ...

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Butanol Butanol + oxygen --> carbon dioxide + Water C4H9OH + 602 --> 4CO2 + 6H20 Bonds Broken 9 X C-H (9 X 410)

  1. Measuring the specific heat capacity of water

    C =18360 / (0.425 x 10) C = 4320 j/kg�C We can check this by using the graph to find the specific head capacity; again we will use the formula: Q = M x C x ? ?. P x T = M x C x ?

  2. Finding a material's specific heat capacity

    When two or more pieces of data are multiplied together, the resultant percentage error will be the sum of the original error of the data. When if items of data are summed or subtracted, the resultant percentage error will be equal to the largest percentage error of the data values.

  1. Resistance of Carbon Putty.

    From the table it can be seen that as we double the length we have roughly doubled the resistance. For instance when we doubled the length from 2 cm to 4cm the resistance went from 2.8 to 4.33 ohms a difference of 1.5 ohms which is almost half of 2.8 ohms.

  2. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    * I will have to use the same method of measuring the magnetic force of the magnet I have decided to use ten-gram weights because weights would give me an answer in grams straight away; a Newton meter would give an answer in Newton's.

  1. The reactivity series.

    > Type of metal-using different types of metals could show more results. > Different concentration of solution (stronger/weaker) > Whether it is stirred- could change the speed of the reaction Prediction I think that given the information I know I would guess that magnesium would let out the most thermal

  2. How does the Relative Molecular Mass change in heat combustion of an alcohol?

    I need, therefore, to be able to measure the energy given out in combustion and then divide that by the amount of moles used. As the majority of energy given out is in the form of heat energy, I will attempt to measure the heat energy given off.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work