• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation into the Strength of an Electromagnet

Extracts from this document...

Introduction

George Maund

Investigation into the Strength of an Electromagnet

Planning Experimental Procedure

When electric current is passed through a wire a magnetic field is created. If you wind the wire around an iron core, then you have an electromagnet. They have North and South poles just like normal magnets, but it does have some differences – if you switch off the current, the magnetic field is lost, and the strength of the magnetic field can be altered by either changing the number of coils around the core, or by changing the current.

I intend to measure the strength of an electromagnet – a magnet consisting of an iron core with plastic-coated wire rapped around. When current is applied through the wire, the iron core becomes magnetic – and I intend to test the effect of varying the current. The factors that will have an affect on the quantity I’m investigating include room temperature, material of core, number of coils around the core – I intend to keep all of these constant. The factor I intend to vary in my investigation (independent variable) will be current – the current flowing through the coils of the electromagnet. I have chosen this as I think it will be the easiest to investigate and carry out. The other variables (number of coils) will be kept constant so as to give valuable and worthwhile results.

Prediction

...read more.

Middle

0.53

2.0

0.94

0.96

0.99

0.95

0.98

0.97

2.5

1.65

1.64

1.65

1.65

1.66

1.65

3.0

2.00

1.80

1.50

2.00

1.90

1.84

3.5

2.20

2.30

2.30

2.20

2.40

2.28

4.0

2.60

2.50

2.90

2.90

2.80

2.74

4.5

3.00

2.90

3.00

2.80

2.90

2.92

5.0

3.10

3.00

2.90

3.10

3.00

3.02

Analysing Evidence and Drawing Conclusions

Conclusion

My results clearly show an S curve – although different to my predicted pattern, is still a pattern. There is some distinct proportionality between Current and Force in the middle section ‘B’ because equal changes in Current cause equal changes in the Force required to pull the piece of metal away from the electromagnet. Section ‘A’ shows that the electromagnet takes time to get started before it reaches the start of section ‘B’ (1.5A). Section ‘C’ is where the graph levels off, where the electromagnet reaches maximum strength – there are no domains left to be turned.

Section ‘A’ shows the domains taking time to be turned at first, but once they reach ‘B’ they are more easily turned. Once they get past 4.5A there are barely any domains left. Section ‘A’ is the only part I did not foresee in my prediction.

Scientific Explanation

I put my conclusion down to the Domain Theory, this time different to my initial prediction as I expand on it to explain section ‘A’ on my graph.

To begin with it is quite difficult for the magnetic field to turn the first few domains. After this it is easier for the domains to be turned because the more domains that are turned, the easier it is for others to be turned.

...read more.

Conclusion

I say generally I mean all except for the readings of 2.5A that read as follows:

2.5

1.65

1.64

1.65

1.65

1.66

1.65

These measurements should have fallen in line with the curve of the graph, meaning they should have read at around 1.40N each time to give an average of approximately 1.40 Newtons. They should have looked something like this:

2.5

1.39

1.40

1.40

1.41

1.40

1.40

Compared to the rest of the results here, they fit in much better. They are highlighted in bold to show up easier.

Current

Force (N)

Average

(A)

1

2

3

4

5

0.5

0.05

0.05

0.05

0.05

0.05

0.05

1.0

0.20

0.20

0.15

0.15

0.15

0.17

1.5

0.50

0.55

0.50

0.55

0.55

0.53

2.0

0.94

0.96

0.99

0.95

0.98

0.97

2.5

1.39

1.40

1.40

1.41

1.40

1.40

3.0

2.00

1.80

1.50

2.00

1.90

1.84

3.5

2.20

2.30

2.30

2.20

2.40

2.28

4.0

2.60

2.50

2.90

2.90

2.80

2.74

4.5

3.00

2.90

3.00

2.80

2.90

2.92

5.0

3.10

3.00

2.90

3.10

3.00

3.02

I can’t blame the experimental procedure for the flawed results at 2.5A. However, I can hope to improve the method by suggesting a change. This would be that the electromagnet’s temperature be controlled by using a Bunsen burner, and to check that the temperature does not fluctuate at all. I would make another change to the method: to exchange the makeshift electromagnet for a properly built set, which would be more reliable than the one I used. This would eliminate the chance of the distance between coils, and the distance between the core and the coils changing. I think the degree of accuracy I used was fine, and the amount of readings was ideal, as the graph showed even more aspects to the line (or curve) than I had anticipated.

In future I would recommend doing an investigation into the resistance of a copper wire, as I predict this would give similar style results to an investigation into an electromagnet.

...read more.

This student written piece of work is one of many that can be found in our GCSE Waves section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Waves essays

  1. To investigate how the strength of an electromagnet change as you varies the number ...

    is more force is being pulled, therefore the weight of the conductor becomes lighter. There are also some factors that can affect the result, which is the way we wrapped the coils on the electromagnet. This is because if we wrap the coils closer together the effect of this is

  2. The aim of my experiment is to see what factors affect electromagnetism the most ...

    This is called keeping it a 'fair test'. To keep the experiment as fair as possible I will have to do certain things. The most obvious thing to keep constant is the other variable that I am not changing, so when in the varying current test I must keep the

  1. What factors affect the strength of an electromagnet?

    This will act as my ruler when measuring the strength of my electromagnet. 2. I will plug in my power supply to the plug and check that it is on the correct voltage. 3. I will then coil my wire around my steel nail.

  2. What factors affect the strength of electromagnetism?

    As explained in the introduction, the reasons for the electromagnet producing the results I obtained, on which my conclusion is based, are the following: When the power was on, the current flowed through the circuit and through the coil that was wound around the core.

  1. Physics investigation- Strength of Electromagnet

    as the current increases the mass of the magnet will also decrease. With the measurements of the weight we will find an average increase and use it in the formula to find the overall force: 1. Collect equipment. 2. Set up as per diagram 3.

  2. How Does the Number of Coils On An Electromagnet Affect Its Strength?

    once this maximum has been reached no more paper clips would be able to be picked up than what it already has. Evaluation Accuracy of results. I am pleased with the accuracy of my results I carried out the experiment to the best of my ability and did the best with the equipment I had.

  1. Strength of an Electromagnet

    not leave it unattended in case an accident with the electromagnet occurs. I will also place the clamp on the stand as close to the ground as possible. That way I can ensure that if the electromagnets and weights do fall then they will not have that far to fall.

  2. 'Investigate the factors which affect the strength of an electromagnet'

    If the current is flowing vertically upwards, the field is anti-clockwise, and if the current is flowing downwards, the field is going clockwise. If someone closes the right hand, the thumb is the direction of the current, and the fingers indicate the direction of the field, going round in a circle.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work