• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation into Transition Metals as Catalysts

Extracts from this document...


Investigation into Transition Metals as Catalysts Introduction Hydrogen peroxide decomposes slowly to form water and oxygen gas. Transition metal oxides will catalyse this reaction. A catalyst speeds up a reaction without being used up. The best catalyst for a reaction increases the rate of reaction the most. The rate of reaction can be measured by the amount of product formed divided by the time of the reaction. If 40 ml of oxygen were produced in 30 seconds (0.5min), then the rate of reaction would be 80 ml/min. Planning- the apparatus available will be: 20 volume hydrogen peroxide solution (irritant), copper dioxide (harmful), iron oxide, manganese dioxide (harmful), spatulas, ele4ctronic balance, measuring cylinder, trough (water bath), stop watch, thistle funnel, delivery tube, bungs to take funnel and tube, boiling tubes. Safety Precautions * Wear goggles. * Make sure that the hydrogen peroxide does not make contact with skin and/or hair. * Wipe bench thoroughly after experiment. ...read more.


21 25.5 35 30 22 26 40 30 22 26 45 30 22 26 50 31 23 27 Average rate of reaction Average rate= volume/time=.....cm3/sec Manganese dioxide= 96/40= 2.4 cm3/sec. Copper oxide= 27/50= 0.54 cm3/sec. Iron dioxide= 27/50= 0.54 cm3/sec. 20 vol. of hydrogen peroxide means that each cm3 gives off 20 cm3 of oxygen gas. We diluted it to 10 vol. Using water and so we would have expected 100 cm3 of oxygen. Hence manganese dioxide as well as being the best catalyst also caused more hydrogen peroxide to break down. Evaluation Although the results obtained were fairly good, there were quite a few problems during the experiment, which affected them. These were: * It was difficult to fill the measuring cylinder with water, as well as insert it into the trough (water bath) without any escaping and creating difficulties in measuring the gas produced. * The largest measuring cylinder was only 100 cm3. ...read more.


The other anomalous result was when testing iron dioxide, as after the first 5 seconds, there was a large difference in the volume of gas between the 2 tests carried out (30 cm3 : 20 cm3). The cause of these anomalous results is most likely related to the surface area of the catalyst in correlation with each test carried out i.e. the powdered catalyst may have been slanted up the boiling tube during one test, but not on the other, resulting in different surface areas. Shaking the boiling tube before each test and/or using a wider testing tube, could have however prevented this. From the results obtained, you can also not definitely state the best catalyst for his reaction, as all 31 transition metals were not tested. Therefore to extend this investigation to find the best catalyst for producing oxygen gas from hydrogen peroxide solution, all the transition metals could have been tested as well as repeat tested for verification. This, in conclusion, would have found the best catalyst for this particular reaction. ?? ?? ?? ?? Daniel Powell. 10k. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work