• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

Investigation on the Resistance of Nichrome wire

Extracts from this document...

Introduction

Lucy Kennington C2

Investigation on the Resistance of Nichrome wire

Planning

Variables

  • Voltage
  • Current
  • Length of wire
  • Apparatus used in the circuit
  • Temperature of room
  • Thickness of wire
  • Temperature of wire
  • Material that the wire is made from

Investigating how changing the length of Nichrome wire affects the resistance

Apparatus

  • 1000mm Nichrome wire
  • 2 leads
  • 2 Crocodile Clips
  • Multimeter (Battery operated)
  • 1000mm Ruler
  • Thermometer
  • Sellotape



Preliminary experiments

I carried out a preliminary experiment to find out which apparatus would be best suited to find the resistance of Nichrome wire, to see the other factors that could affect the experiment and also to see if I could improve any of the steps in the method.

I began by setting up two circuits, the first with a multimeter and the second with a power pack, I wanted to see which one would be more accurate for my investigation. Using a multimeter is more accurate because it keeps the current going through the circuit low which keeps the temperature of the wire just about the same, this means if the wire is not heated and so the particles of atoms and electrons will not collide as frequently which therefore will not convert as much kinetic energy into heat which could affect the results. The multimeter will have the same current because of the fuse, the fuse only lets up to 0.25A flow through any circuit, this is a low current so it will not give the wire a noticeable heating affect although there is very little temperature change, but it would not affect my investigation.

If I used the power pack to find the resistance of the wire I would have to wait for the wire to cool down in between each

...read more.

Middle

As the cross-sectional area of the wire doubles, the resistance will half. There would be twice as many ions and twice as many electrons bumping into them, but also twice as many electrons getting through twice as many gaps. If there are twice as many electrons getting through, there is twice the current, the resistance must have halved. The thinner the wire is the less channels of electrons in the wire for current to flow, so the energy is not spread out as much, so the resistance will be higher: We see that if the area of the wire doubles, so does the number of possible routes for the current to flow down, therefore the energy is twice as spread out, so resistance might halve.

I think the graph will be like the shape I have drawn it because I predict the longer the wire the higher the resistance and because I think the resistance of wire will go up by the same amount each time. I think the graph will be straight in a diagonal line going to the right. The graph line does not go through the origin because even if I were to place the crocodile clips on the wire at 0mm there would still be a resistance because of the resistance of the leads. The graph would go through the origin if I took away the resistance of the leads and the crocodile clips, this would not give an accurate drawing of the graph though because when the crocodile clips are touching and connected in the circuit with the multimeter there will always be some resistance due to the leads.

Bibliography

(1) = Internet resources

Table of Experiment Results

Length of Wire (mm)

Thickness of Wire (mm)

Room Temp (˚C)

Voltage (V)

Current (A)

Resistance of Wire (ohms)

1

2

3

0-0

0.45

21

9

<0.25

0.3

0.3

0.3

0-100

0.45

21

9

<0.25

1.0

1.0

1.0

0-200

0.45

21

9

<0.25

1.7

1.8

1.7

0-300

0.45

21

9

<0.25

2.4

2.4

2.5

0-400

0.45

21

9

<0.25

3.2

3.1

3.2

0-500

0.45

21

9

<0.25

3.9

3.9

3.9

0-600

0.45

21

9

<0.25

4.6

4.6

4.8

0-700

0.45

21

9

<0.25

5.3

5.3

5.3

0-800

0.45

21

9

<0.25

6.0

6.0

6.1

0-900

0.45

21

9

<0.25

6.9

6.7

6.7

0-1000

0.45

21

9

<0.25

7.4

7.4

7.5

...read more.

Conclusion

I think I got those anomalies because of a wrong measurement when I was attaching the crocodile clip to the wire. I probably just made the increasing gap bigger than it should have been because the resistance between the two points were more than normal 0.7ohms.

If I had time the additional experiments which I would have carried out to be sure of my graph results would be longer length of Nichrome wire, to see if the graph would carry on in a straight line and increase by the same resistance each time and the resistance of the clips and leads would have been less significant.

I do not think there is another way to investigate the variable I did apart from changing the apparatus and using a power pack, digital voltmeter and ammeter instead of using a multimeter.

Things, which could affect the end result of my investigation, need investigating. Things that could affect my final results would be rusty old crocodile clips so I would have to test them to make sure they gave the correct resistance. I could do this by attaching two crocodile clips together in a circuit with a multimeter and if the resistance were different from 0.3ohms I would know that they are not giving me the correct resistance. I know this because in my preliminary experiment I did the same but with clean crocodile clips and they gave me a resistance of 0.3ohms. If I were using a power pack I would also need to investigate the heating affect. I would have to use a thermometer to check the temperature of the wire.

G.C.S.E Science Coursework

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigating how the resistance of Nichrome wire depends on its length

    Conclusion: By forming a graph using my results we can instantly see the relationship between the length of wire and the resistance. It is a positive directly proportional relationship and this is illustrated with the straight red line of best fit that has passed through the origin.

  2. An experiment to find the resistivity of nichrome

    The ammeters and voltmeters could have been damaged and reading falsely on both the meters used. Measuring the lengths of the wire is also a inaccuracy as the rulers used are not exact, and it is difficult to get an accurate reading of length by eye, as the wire might

  1. Physics GCSE Coursework:Factors affecting the resistance of a wire

    A (mm2) 38 0.152 0.01824 34 0.234 0.04301 28 0.376 0.1104 26 0.457 0.16403 Because of the limitations at my school, only 4 different SWG wires where available to me, and so my graph will have at the most 4 points on it, therefore being not as accurate as if I had for example 10 points.

  2. The resistance of wire.

    the same, The edge of the crocodile clips should be at the edges measured length. The Variable factor The factor that I am going to vary is the length of the E26 wire. Circuit diagram Method The circuit was set up as shown above.

  1. Resistance of a Wire Investigation

    the equation RESISTANCE=VOLTS CURRENT I will obtain the voltage and current readings from the voltmeter and ammeter. Below is a circuit diagram for my preliminary experiment. POWER SUPPLY VOLTS AMMETER VOLTMETER CROCODILE CLIPS WIRE METER RULER To ensure a fair test I shall keep the power supply at 2 volts

  2. What factors affect the resistance of a wire?The reason why the length of the ...

    * 100 cm ruler (Measure the length of wire) * 50cm ruler (measuring smaller lengths of wire) * Temperature gauge (checking for a constant temperature) Preliminary tests I have decided I am going to investigate the affect the length of a wire has on the resistance. Before I carry out my experiment I performed some preliminary tests, these were

  1. An in Investigation into the Resistance of a Wire.

    A voltmeter can be used to show how the potential difference varies in different parts of a circuit. In a series circuit you get different values of the voltage depending on where you attach the voltmeter. The energy can be assume that it is only transferred when the current passes

  2. How Does the Shape of a Resistance Wire affect its resistance?

    Each repetition after that, the wire should be folded another two times (i.e. the second time you repeat steps 2 and 3, the wire should be four times its original thickness and the third time you repeat steps 2 and 3, the wire should be six times its original thickness.)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work