• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation to find out what affect the position of a metal in the reactivity series has on its ability to be displaced.

Extracts from this document...

Introduction

Johanna Mans 12.2 Enthalpy changes on displacement and the reactivity series Aim To find out what affect the position of a metal in the reactivity series has on its ability to be displaced. Background Information The reactivity of metals is shown in the reactivity series below. Potassium Most reactive Sodium Calcium Magnesium Aluminium Zinc Iron Lead Copper Silver Gold Platinum Least reactive As zinc is higher in the reactivity series than both lead and copper, it will be able to displace them from their compounds. Hypothesis The closer the metal is to zinc, the harder it will be for zinc to displace, eg, iron would be harder for it to displace than silver. This means that less energy will be produced. Therefore, I predict that lead will be harder to displace, and will therefore have the smaller enthalpy change value. Apparatus Justification Apparatus Justification Polystyrene Cup This acted as the calorimeter, and this is an insulator to ensure that it is not effected by the heat changes in the ...read more.

Middle

It is an irritant so if spilt on labcoat or skin, the area should be washed immediately. Diagram Method 1. The calorimeter was set up as shown in the diagram above. This was done by placing a polystyrene cup inside a glass beaker. 25cm� of 0.2 molar copper sulphate was measured into the calorimeter, using a 25cm� pipette. 2. A thermometer was placed in the solution, and the solution was left for one minute to adjust to room temperature. This was timed by a stopwatch. 3. During this time, one gram of zinc was measured out into a small container using electronic scales. After the one minute rest, this was added to the calorimeter and the temperature was taken immediately. 4. The temperature was then taken every 30 seconds, and the mixture was stirred occasionally. The results were recorded in the results table below. For the second experiment, the method was the same as in stages 2, 3 and 4. ...read more.

Conclusion

C = Specific heat capacity of the surroundings ?T = Temperature change Reaction 1 25 x 4.2 x 24 = -2520 J 2520/1000 = -2.52 kJ Reaction 2 25 x 4.2 x 22 = -2310 J 2310/1000 = -2.31 Kj The values are negative because the reactions are exothermic. Conclusion The results suggest that the further apart the results are in the reactivity series, the larger the enthalpy change will be. The results could be further improved in several ways: � The heat loss could be minimalised by placing a plastic lid over the top of the calorimeter � Using a higher grade of equipment. For example, the pipette was grade B, and more accurate results could be achieved by using a higher grade of equipment. � Repeating both experiments and then taking mean values. This would smooth out any anomalous results. It must be understood that the results are only accurate to a certain degree because of the equipment. The scales only weigh to 2 decimal places, and the automatically round up. This means the results could be up to 0.009 figures out. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    Using a clean dropping pipette add Sulphuric Acid (aq) to the volumetric flask until the bottom of the meniscus is touching the graduation mark. 10) Stopper the flask and invert it several times. 11) Full a 50 cm3 burette with 0.01 mol dm-3 Potassium Manganate (VII) (aq). 12) Using a 20 cm3 pipette transfer 20 cm3 of the spinach extract solution to a conical flask.

  2. Electronic spectroscopy - Homoleptic chromium(III) complexes and the spectrochemical series.

    2.5g anhydrous CrCl3 was added in small portions, causing slight effervesence, and the solution stirred for 10 minutes. The vacuum tube was removed from the Dewar and the red-brown contents transferred to a 6"diameter evaporating basin. The basin was left for 45 minutes, by which time the ammonia had evaporated.

  1. metal extraction and reactivity

    * Some ores are already concentrated. But the other ores are concentrated before extraction. * The method used for extraction depends on the metal's reactivity. g. Extraction of reactive metals * Difficult to extract * Electrolysis of the molten, purified ore * Metal is produced at the cathode; non-metal - anode * Expensive method * To reduce costs, electrolysis is done where hydroelectric power is available.

  2. Investigating the Effects of Increasing Copper Sulphate Solution Concentrations on the Germination of Cress ...

    copper sulphate solution mg/l Significant difference in mean number of seeds germinated ( / )

  1. Production of Zinc Sulphate

    Exposure Inhalation: Dusts or mists (solutions) are probably non-irritating or mildly irritating. No human information is available, but inhaled zinc sulphate caused no observable toxic effects in animal tests. Reversible loss of the sense of smell may occur, based on data from animal tests.(2) Skin Contact: Zinc sulphate is not likely to cause irritation to the skin.

  2. Determine the crystallisation temperature of the solution potassium nitrate at different concentrations and use ...

    56 329 3.04 x 10-3 12.0 8.24 17.53 47 320 3.13 x 10-3 14.0 7.06 16.24 42 315 3.17 x 10-3 Table of values for the line of best fit. R.ln S Reciprocal of absolute temperature 1/T (R = 8.31 J mol-1 K-1)

  1. To organise 5 given metals into a reactivity series using 0.2 M Copper (II) ...

    Where 'X' is one of the five metals. And if X does not react with Copper Sulphate Solution, then we will have: X(s)+ Cu2+(aq)SO42-(aq) � X(s)+ Cu2+(aq)SO42-(aq) Either way the reacting ratios will still be 1:1. So 1 mole of X will react with 1 mole of Copper Sulphate Solution.

  2. Reactivity Series Investigation

    without any protective glass whereas the iron and zinc and aluminium didn't react as violent as this because they didn't turn into another sunstance but they did change colour.The end result of the magnesium reacting with oxygen is magnesium oxide that is in word equation magnesium+oxygen equals magnesium oxide.The chemical

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work