• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation To Show How Resistance Is Affected By Length.

Extracts from this document...


Investigation To Show How Resistance Is Affected By Length

Plan of Action

In order to investigate “how resistance is affected by length” I will need to:

  • Present my aim
  • Show scientific knowledge relevant to the topic
  • Consider my hypothesis
  • Produce a list of apparatus required for my experiment
  • Consider an appropriate method
  • Show considerations of Safety
  • State the possible variables in my experiment
  • Show attention to accuracy
  • Include a circuit diagram
  • Decide on a clear method to show data  for example a results table, graph with line of best fit and error boxes
  • Analyse my results
  • Make a conclusion based on my results
  • Evaluate against my original intentions for my investigation

My Aim

My aim is to use conducting putty to investigate any possible relationship between the resistance of an object and its length.

Scientific Knowledge

Resistance determines how easily a charge can travel through a circuit. The higher the resistance the harder it is for the charge to flow through a circuit and visa versa. The longer the length the higher the resistance, this is due to there being more particles to slow down the flow of electrons (charges). The amount of charges will half when the length is halved. We know that resistance is inversely proportional to length and also to the cross sectional area.

...read more.


Circuit Diagram


Length (m)

Reading 1 (ohms)

Reading2 (ohms)

Average (ohms)









































The width of the conductive putty was 2.4cm (+/- 1mm) by 2.9cm (+/- 1mm).


From my results I have made a graph and included a line of best fit. The graph shows average resistance over length. The graph also shows that resistance is directly proportional to length. There is a pattern that arises which shows that as the length of putty increases so does the resistance. Also, as my results are not perfect due to human error and the variables in the experiment, I have made error boxes these are 2 mm each side of the line of best fit and 0.2 ohms. Although I have not completed a perfect experiment I have not had any anomalies. My results support my hypothesis which is that resistance is directly proportional to length and the longer the length of putty the higher the resistance. I also found while implementing my experiment I found that some things I had planned to do in my method I found were not necessary.

...read more.



To improve my investigation I would firstly, take more readings so that I could obtain a better average which will produce better results. Secondly, I would try to keep the room at a constant temperature as changes in temperature can affect the resistance of the putty. The warmer the putty the more particles move around therefore making it harder for current to pass through. Lastly, I could try minimising the contact my hands  with the putty as this will cause the same effect as the change in room temperature but maybe to more of an extend as my hands would be directly on the putty. Moreover, I would check that the copper squares were attached properly and find the resistance of the wires I use so that I could subtract it from my results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Conducting Putty

    Apparatus: * Batteries * Voltmeter * Ammeter * Putty * Gloves * Knife * Variable Resistor * Callipers * White tile * Switch * Wires * Pennies * Ruler Diagram of Circuit: Health and Safety: * Ensure your hands are dry before touching anything electric.

  2. How does length and width affect resistance

    resistances and therefore less percentage error, the 50cm wire is easier to handle, measure and cut. In other ways the 50cm wire is more accurate, for example during the preliminary experiment the wire, especially the thicker and longer wires could not placed straight on the ruler and so the length could not be measured properly.

  1. Find out the relationship between resistance and conductive putty, and to see how length ...

    There are some inaccuracies as the voltage was slightly different for each experiment, and I feel that points for the later experiments are also out. This is visible in my results and is maybe due to the fact that the same piece of putty was used for all three experiments, and so heat from my hands must have affected results.

  2. Resistance Investigation

    The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area. Resistance also depends on the material of the conductor. The resistance of a conductor, or circuit element, generally increases with increasing temperature.

  1. Resistance of Carbon Putty.

    What can also be seen is that from a length of 14.5 cm where the resistance was 16.5 ohms to a length of 7.5 cm where the resistance was 7.7 ohms the resistance has almost halved. This process was very time consuming, as we had to first measure the current and then calculate the resistance.

  2. To investigate whether the surface area or the lengths of the carbon putty will ...

    is said that R = V and therefore we are I measuring the current by varying the length of the carbon putty. We were using a 3 Volts cell and an ammeter to measure the potential differences passing through the conductor putty.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work