• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Is there a link between the number of carbon atoms in a hydrocarbon and how viscous it is?

Extracts from this document...

Introduction

Emma Knightimage00.png

Chemistry coursework

Runny oil investigation

I am going to investigate is there is a link between the number of carbon atoms in a hydrocarbon and how viscous it is?

Apparatus

  • Alkane liquids in sealed glass tubes (50cm long)
  • Stands to hold the glass tubes up right
  • Steel ball bearings placed inside the glass tubes
  • Magnet
  • Stop watch
  • Tape

Safety apparatus

  • Stand to hold the glass tube in place to prevent accidents

Method

I will select an alkane (glass tube), any as I want to record data from each alkane possible. I will use a magnet to drag the steel ball bearing up to the top of the glass tube. I will pull the magnet away and allow the ball bearing to fall 50cm through the glass tube. So that each experiment is fair I will previously mark each glass tube with tape stating the beginning of the 50cms at the top and the end at the bottom of the glass tube. Straight after I have allowed the ball bearing to fall I will start to time and stop it when it reaches the end of the 50cm drop. For each alkane I will repeat the experiment at least five times is not more, to give me more accurate results and an accurate average.

image06.pngimage05.pngimage01.png

image21.pngimage21.png

        Steel ball bearingimage23.pngimage07.png

image24.png

image25.pngimage02.png

...read more.

Middle

v = 2/9(d1 - d2)gr2/

To work out the velocity in my investigation I will use the simple equation, however if I were to extend this I could explore stokes’ law and try taking results from other angles.

 Emma Knightimage00.png

Chemistry coursework

My results

Alkane

1st Test

2nd Test

3rd Test

4th Test

5th Test

Average

Range

Accurately

Average Velocity

Butane

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Pentane

1.24

1.28

1.25

1.27

1.19

1.25

0.09

<  3.6%

0.4m/s

Hexane

1.31

1.29

1.35

1.29

1.24

1.3

0.09

<  4.2%

0.39m/s

Heptane

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Octane

1.77

2.03

2.07

2.11

2.03

2.02

0.34

<  7.5%

0.25m/s

Nonane

1.38

1.34

1.31

1.37

1.3

1.34

0.07

<  2.6%

0.37m/s

Decane

1.38

1.33

1.39

1.41

1.39

1.38

0.08

<  2.9%

0.36m/s

Dodecane

1.62

1.54

1.56

1.59

1.58

1.58

0.08

<  2.5%

0.32m/s

Hexadecane

1.59

1.59

1.62

1.6

1.62

1.6

0.03

<  0.9%

0.31m/s

Class results

Alkanes

Average 1

Range 1

Average 2

Range 2

Average 3

Range 3

Overall average

Butane

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Pentane

1.25

0.09

1.34

0.18

1.35

0.5

1.31

Hexane

1.3

0.09

1.37

0.09

1.7

0.36

1.46

Heptane

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Octane

2.02

0.34

2.16

0.06

2.2

0.44

2.13

Nonane

1.34

0.07

1.49

0.05

1.65

0.34

1.49

Decane

1.38

0.08

1.58

0.14

1.88

0.29

1.61

Dodecane

1.58

0.08

1.7

0.03

2.38

1.46

1.89

Hexadecane

1.6

0.03

1.75

0.07

2.06

0.35

1.8

From these results some stand out straight away to be anomalous, for example the Octane set of results. The results for

...read more.

Conclusion

Average velocity = distance moved in a certain direction / time taken

m/s =meters/seconds

As the ball bearing takes longer to fall through the same distance the velocity becomes slowly smaller.  Therefore my results showed this.

However, to improve or to extend my results I would have to take more tests for each experiment and maybe see how different angles affect the time and velocity. I could take more notice of the size and density of the sphere and the density and the viscosity of the liquid, which would allow me to use Stokes’ law to have more accurate results for the velocity of alkanes. Though to improve this investigation I could take a larger range of results repeating them ten times, which would give a stronger average. As well as changing the Octane I used.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Viscocity of Alkanes.

    All five ball bearings seemed to reach their terminal velocity at the same timed interval. Viscosity of liquid The second set of experiments was to show the affects of a more viscous liquid (engine oil) on the decent of a ball bearing.

  2. Bouncing Ball Experiment

    period in which the experiment was conducted, and although the room's temperature may have increased by a degree or two, due to body heat, over the course of the period temperature was not a major factor that affected the height to which the ball bounced and would not have significantly affected the results.

  1. The effect of the temperature on the viscosity of the syrup.

    Wait until the temperature falls down to 450 and repeat the procedure as for the 500 16) Repeat the whole procedure for the following temperatures three times: 500, 450, 400, 350 , 300, 250 and 200 17) Now place the measuring cylinder into the freezer and remove it when the temperature reaches 50.

  2. Investigation into the effect of temperature on viscosity

    The measuring distance must be kept constant throughout the whole experiment this is ensured by the two measuring markings. A constant temperature throughout the whole fluid must be achieved; this can best be done by quickly transferring the measuring cylinder from the heat source to the workbench and conducting the experiment right then.

  1. Investigation into the range of a ski jump

    In the prediction it was calculated that the gradient of the graph (of h1 against range´┐Ż) should be equal to 4h2, but the gradient results (from graph that compares the prediction and actual results) show that 31.4cm is lost between the predicted value of h2 and the actual value of h2.

  2. Practical investigation into Viscosity in liquids (Stokes Law).

    0.17 0.18 0.20 0.183 20-40 0.18 0.19 0.20 0.190 30-50 0.20 0.18 0.19 0.190 Small Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured 1 2 3 Average 0-20 0.24 0.25 0.24 0.243 10-30. 0.20 0.21 0.21 0.206 20-40 0.18 0.18 0.19 0.183 30-50 0.17 0.19

  1. Practical Investigation Into Viscosity

    (If you know of any good stories about George email them here). Stokes came up with a formula that can predict the rate at which a sphere falls through a viscous gas or liquid. He was the first to understand why a mouse can fall 1000 feet and walk away yet a man would be dead.

  2. Squash Ball and Temperature Investigation

    To make the test fair, the ball was heated at the same temperature for each height that it was tested for (again, the temperature it was heated at was measured accurately with a thermometer), for each height it was

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work