• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Isaac Newton's second Law of Motion states that, Force = Mass x Acceleration.

Extracts from this document...

Introduction

Newton’s Second Law Coursework

Introduction

Isaac Newton’s second Law of Motion states that, Force = Mass x Acceleration. For this project I intend to prove or disprove this theory.  The fact that the Law has survived 300 years of evolving science provides much of the needed evidence that the Law is truthful and works but I will do the experiment to determine my own set of results.

I hope to answer the question:

‘Is there a link between mass and acceleration ?’

Newton’s Second Law

Newton’s Second Law is a way of finding the force that is acting on a certain object by using the known mass of the object and the projected acceleration and that the mass is inversely proportional to the acceleration.

For example, A bus keeps going forward because the forces of acceleration and friction are unbalanced but as soon as these forces become balanced than the bus will keep a steady speed.  It is this that I am going to investigate.  

The Law can be tested quite easily by using a simple test, involving a trolley, a ramp and some weights.

...read more.

Middle

A list of the equipment I will need is shown below:

  1. A Trolley
  2. A Two Metre long ramp
  3. A Ticker Timer
  4. Ticker Tape
  5. A Pulley – so when we let the weights drop there will be as little friction as possible.
  6. String
  7. 5x 1Newton weights

We will measure the acceleration caused by a certain weight three times to make sure we get the right results.

The Variables

  • Mass
  • Acceleration
  • Force        
  • Friction

See page one for variables being tested.

How to make it a fair test

To make the experiment fair, the only variable that I will change is the amount of weight that is used to pull the trolley down the runway.  All the other components i.e. length of string, height of runway, and stated variables will be kept the same.

Prediction

Based on the results that we obtained when we used Newtons Theory to work out the projected accelerations for each different weight, I would say that the more weight that is applied to pull the trolley down the ramp the more the trolley will accelerate.  This is because the trolley has an unbalanced force which means it will accelerate.

...read more.

Conclusion

1

1721.5

0.58 m/s/s

0.360

1

0.58 m/s/s

0.380

1

0.58 m/s/s

0.310

2

1821.5

1.097 m/s/s

0.811

2

1.097 m/s/s

0.702

2

1.097 m/s/s

0.705

3

1921.5

1.561 m/s/s

1.208

3

1.561 m/s/s

1.198

3

1.561 m/s/s

1.211

4

2021.5

1.979 m/s/s

1.330

4

1.979 m/s/s

1.301

4

1.979 m/s/s

1.326

5

2121.5

2.356 m/s/s

1.480

5

2.356 m/s/s

1.560

5

2.356 m/s/s

1.534

My results are highlighted in red

Below is a graph of my results.  I have used averages of the 3 recorded acceleration in the graph.

image08.pngimage09.png

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. What affects the acceleration of a trolley down a ramp?

    The graph of my predicted results and the graph of my results aren't that different because the gradient of my predicted results is 1 and the gradient of my results is 0.8. The explanation for this difference is friction, which the predicted results fail to take into account.

  2. An investigation into the acceleration of a trolley up a ramp.

    Also there is a chance of the ramp having different surfaces such as dust or dirt, this would have slowed the trolley down. All of these problems could have caused the trolley to change accelerations and cause these anomalies. As in most experiments there are improvements that can be made.

  1. To determine the relationship between mass and acceleration when force is kept constant.

    0.0938 3.00 3.51 0.0837 3.25 3.75 0.0732 3.50 4.01 0.068 3.75 4.26 0.062 NOTE: For Average Acceleration, it is considered to be digital error. Which rounded of the last digit. For example: If the machine shows to 2 decimal points, 3.14 then the uncertainties for this are ?0.005 as the range of the data could go from 3.135 to 3.145.

  2. Investigating the Factors Which Affect the Motion of a Trolley Down an Inclined Plane

    Mass is the amount of matter in an object, measured in kilograms (kg). WEIGHT IS A FORCE Frictional forces also act upon the trolley; they are the forces, which prevent motion. These forces prevent an object moving over a surface or through a fluid.

  1. Physics Coursework: To investigate the Oscillations of a mass on a spring

    Distance (cm) Time taken to do 10 oscillations (s) 1st attempt Time taken to do 10 oscillations (s) 2nd attempt The average of 10 oscillations (s) The average of 1 oscillation (s) 3 4 5 12.99 13.01 13 1.3 3 4 10 13.17 13.05 13.11 1.311 3 4 15 13.32

  2. My prediction is that as the height of the runway is increased, the velocity ...

    Dividing the distance between the beginning of the first interrupter and the second interrupter by the time shown on the stop clock connected to a light gate. This technically is the most accurate because it does not rely on human reaction time.

  1. GCSE Physics - Force, Mass and Acceleration Coursework

    placed, or fastened, to the trolley, so that they do not come off from the trolley and cause injury. Equipment: I will need a special ramp with elastic at one end, books to put under the ramp to get elevation, but the elevation must be so that it is a friction/gravity compensated.

  2. Investigate the rule of 'Force = Mass x Acceleration and so investigate the relationships ...

    is decreasing. Apparatus: * A standard stool * A margarine box and lid * A Newton meter * Between 50g and 100g of sand * Electronic scales to measure sand * A metre stick * A durable elastic band Method: Firstly, I will measure the amount of sand I will need to perform the first weight.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work