• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Making sense of data - Stopping distances

Extracts from this document...

Introduction

James Fung                                   14thMarch,2002

Physics coursework --- making sense of data

Stopping distances

Introduction:

In this coursework, I didn’t carry out the experiment because we are meant to use the results provided from the teacher to do an analysis. And my coursework is about the stopping distance of a small ball bearing on a carpet after rolling down from a runway with various distances. First, the ball was placed at 100mm up slope and allowed to fall. When it reached the carpet, the carpet caused deceleration to the ball, so after a certain distance, it stopped. Then, the procedure was repeated for 3 times to get an average result of the stopping distance. Next the ball was placed at 200mm, 300mm . . . 800

...read more.

Middle

Distance up slope (d) /mm

Stopping distance 1 /mm

Stopping distance 2 /mm

Stopping distance 3 /mm

Average stopping distance (s) /mm

100

154

154

155

154.3

200

342

344

344

343.3

300

464

472

464

466.7

400

563

572

573

569.3

500

667

687

690

681.3

600

817

830

835

827.3

700

930

940

940

936.7

800

1100

1095

1100

1098.3

image11.png

Using simple geometry, I can work out the corresponding height of a particular distance up slope.                                              860mmimage10.pngimage09.png

                                        172mm                   d

e.g. When d = 800mm

image12.png = image13.png

              h = 160mm

Distance up slope     (d) /mm

Corresponding height    (h) /mm

Average stopping distance  (s) /mm

100

20

154.3

200

40

343.3

300

60

466.7

400

80

569.3

500

100

681.3

600

120

827.3

700

140

936.7

800

160

1098.3

image14.png

Kinetic energy = image15.pngmv2 (where m is the mass in kg, v is the velocity in ms-1)

Potential energy = mgh (where

...read more.

Conclusion

  1. the meter ruler --- the limit of accuracy was = image20.png0.5mm, this is due to the distance apart from each unit of the meter ruler is 1mm and as the data of the stopping distance given, all decimal places have been rounded up
  2. the air resistance --- although the air resistance that acts on the ball when it decelerated on the carpet would be small, it could still have an effect on the rolling ball. However, I have ignored it throughout all my calculation and analysis, so this could have made it inaccurate.
  3. assumption --- during the analysis, I have made two assumption, which is the energy wasn’t lost, all potential energy was converted into kinetic energy, and the deceleration in each case is constant until the ball stopped. This again has affected the result as things are not likely to be as assumed in real life.
  4. friction --- throughout the analysis, I haven’t mentioned about friction at all. As friction is proportional to force, so without taking this into account definitely lead to inaccuracy.

END

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigating Stopping Distances

    The values for 20mph and 40mph, the braking distances are 6m and 24m. Doubling the speed gives four times the breaking distance. Summarily trebling the speed, from 20mph to 60mpj gives nine times the breaking distance. This gives a curved graph.

  2. Squash Ball and Temperature Investigation

    the ball is bounced on will affect how it bounces back up and how far too. To overcome this, a surface, which is horizontally straight, will be chosen to experiment on. This same surface will then be used so that there will not be any change in its angle making the test fair.

  1. Approximate Stopping Distances

    Braking distance is not directly proportional to speed whereas the thinking distance is. E.g. when the speed of the vehicle is 30 mph the braking distance is 45 ft whereas when the speed of the vehicle is 60 mph the braking distance massively increases to 180 ft which shows that the rate of change is not consistent.

  2. Investigating the amazingness of theBouncing Ball!

    This can be used to obtain an expression for the velocity aquired by a ball of mass m in falling freely from rest at a height h where the air resistance will be considered negligable. As the ball falls it loses gravitational potential energy and gains KE.

  1. Stopping Distances

    Prediction I predict that the higher up the ramp we let the car go, the longer the stopping distance will be. This is because the further the car travels down the ramp the closer to its terminal velocity it will get.

  2. Mechanical Properties of a Meter Rule

    Permanent set is due to the ~plasticity~ of the material. A perfectly plastic substance would have no elasticity and the smallest forces would cause a set. Lead and moist clay are nearly plastic and wood possesses this property to a greater or less extent.

  1. Investigating the relationship between the speed of a model car and its stopping distance.

    *Kinetic Energy - any moving body has KE and the faster it moves the more KE it has. For example as a hammer strikes a nail or a JCB levels ground it exerts a force and does work because of the KE it possesses as a result of its motion; KE is a form of mechanical energy.

  2. Designing a children's slide, making it exciting for the children whilst exercising safety.

    As illustrated below the angle has an influence on acceleration. mg sin? -?N = ma mg sin? -?(mg cos?) = ma g(sin?-? cos?) = a Acceleration at which the child travels will eventually fall. The following formula( Newton's Second Law of Motion )

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work