• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

Mechanics 2 Coursework - 'woosh' down the slide

Extracts from this document...

Introduction

Guowen Qin                                                                                                     2007-5-10

Mechanics 2 Coursework

‘woosh’ down the slide

Introduction:

The diagram below shows a slide. An object slides a distance L down the slide, and then shoots out at the end to fall through a vertical distance H before hitting the ground. Obviously, the greater L the further the horizontal distance D that it lands away from where it left the slide.

image00.pngimage01.png

image00.pngimage11.png

image12.pngimage13.png

Limage14.png

Өimage00.png

image26.pngimage03.pngimage27.pngimage02.png

image04.png

                                                          H            Plastic boximage05.png

image06.png

Dimage07.pngimage08.pngimage10.pngimage09.pngimage09.png

To investigate how D is related to L for one particular angle of inclination, I am going

to do an experiment to see if this relationship turns out in practice to be as predicted.

The apparatus that is required is:

  • A Wood ramp(slope);
  • A Aluminium weight(cube);
  • A plastic box;
  • A piece of card board;
  • A meter rule;
  • A protractor

Before I do the experiment, I need to make some assumptions which are relating to both the model and the experiment:

When the experiment is conducted, it must be insured that all of the apparatus is attached securely to ensure that nothing comes apart. General laboratory rules must be recognised to ensure safety throughout.

The variable that will be investigated is the range that the object is projected.

The independent variable is the height up the slope that the block is released from. It is measured using a metre ruler.

...read more.

Middle

image04.png

vvv

                                                           Himage05.png

image06.png

Dimage08.pngimage07.pngimage09.pngimage09.pngimage10.png

vh = vcosӨ ;    vv = vsinӨ

∵ D = vh * t     ∴ t = D / vh

Consider the vertical component,

S = ut + ½ ut2→ H = vv t + ½ gt2

→ H = vv D / vh + ½ g D2 / vh2

→ H = vsinӨ D/ vcosӨ + ½ g D2 / v2cos2Ө

→ H = D tanӨ + g D2 / (2 cos2Ө(2gL(sinӨ - tanФcosӨ)))

→ H = D tanӨ + D2 / (4 cos2ӨL(sinӨ - tanФcosӨ))

→ D2 / (4 cos2ӨL(sinӨ - μcosӨ)) + D μ - H =0

(Noticed that, this is a quadratic equation.)

I can calculate the horizontal distance D by substitute the Ө and Ф values in then solve the quadratic equation. This will give me the predicted value of D.

Let 1/(4 cos2ӨL(sinӨ - μcosӨ))=a; μ= tanФ =b; -H=c

The quadratic equation becomes aD2 + bD +c = 0 .

I will produce a table in Microsoft Excel, showing the Ө in degrees, Ф in degrees, L in metres, H in metres and a, b and c.

Then as long as I got the values for a, b and c, because it is a quadratic equation, so I will be able to calculate the value of D by using a formula to find the roots of a quadratic equation:-  (-b±(b2-4ac)^(1/2))/2a.

And in this case, I will only need the positive solution of the quadratic equation, which will be give by using the formula (-b+(b2-4ac)^(1/2))/2a.

...read more.

Conclusion

°(22.2-18.7), so the percentage error is roughly (3.5/20.4 *100%) 17.2%. It is a huge percentage error. Not only the error in reading the angle, but also the calculation μ = tan Ф, because the angle is in decimal place(not accurate), take the tangent to that angle will increase the error again. If the value of μ is not accurate, then the friction is not perfect as well, from the energy transfer equation, Ept = Epb + Ekb + W.D, the kinetic energy I obtained will be affected by the varied friction, the velocity when the block just leave the slope will change, therefore the distance land will vary.

e.g if the calculated μ is less than the actual value, the work done due to friction is smaller, so the velocity is greater than the actual value, then the landed distance obviously would be further away from the edge than the real landed distance. The graph for this case should lie a bit higher than the true graph.

Percentage error:

The error for the experiment caused by lots of things. Friction measurement, height measurement, length measurement and distance measurement.

Take the accuracy of each measurement and divide by the smallest value I have got for each measurement then times 100% to get the percentage error

The error for angle (Friction): 17.2%

After doing the calculation ,μ = tan Ф, the error increased.

The error for L (Length): image30.png0.001m

Percentage error =  0.001/0.1 * 100% =1.0%

The error for H (Height): image30.png0.001m                  

Percentage error =  0.001/0.282 * 100% =0.4%

The error for D (distance): image30.png0.001m

Percentage error =  0.001/0.129 * 100% =0.8%image31.png

Total percentage error = 17.2% + 1.0%+0.4%+0.8% =19.4%

/

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigating Sliding Friction: the effect of weight on sliding friction between a block and ...

    The C must be taken away from the force that has been recorded. Once this has been taken away it will be able to see if my prediction that the weight is doubled then the force of friction is doubled is right.

  2. Investigation into Friction.

    Accuracy We need to work out the maximum percentage uncertainty for the graphs of the results that we have produced. To do this, we can use the distance any point is from the line of best fit, and divide it by the point where it should be, on the line of best fit.

  1. In this experiment I aim to find out how the force and mass affect ...

    Thus when a coin and a feather are dropped from the same height in a vacuum, they both hit the ground at the same time. This is an important principle in science. If air resistance is the same for two objects that are dropped, they will gain speed at the

  2. The aim of this experiment is to investigate the relationship of the height of ...

    A table and graph will also be produced in the end. Here is a diagram of the apparatus. Another diagram in preventing the end of the ramp moving forwards: Equipment: Equipment: Curved Track (ramp) Metal Ball (Skier) Paper tray Blue Tac Sand tray Meter ruler Marker pen Clamp stand G-clamps

  1. Physics Coursework: To investigate the Oscillations of a mass on a spring

    collide with the air molecules. The equilibrium state: First of all by looking at the diagram, the resultant force is equal to the downward force and the mass and the spring remain unmoved due to the Newton's first law, and we call this equilibrium, where the 2 forces are equal.

  2. The Flywheel as an Alternative Energy Storage Device for Electric Vehicles (EV): Problems Associated ...

    The question remains, however; how fast can it spin? The maximum angular velocity of the flywheel In theory, high speeds are desirable for flywheels in order to avoid using wheels that are unnecessarily large and heavy. This way, the flywheel will have a large energy stored per weight ratio.

  1. Pendulum Coursework.

    l = length of the thread ? g = acceleration due to gravity ? T = time for one oscillation or the period of the pendulum > G= ?T� G stands for gradient ?l > 1 = l G T� ..................(2)

  2. Parachutes Coursework

    To make our experiment a fair test we will: drop the parachutes from the same height each time, keep the weight on the end of the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work