• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

My aim is to investigate how the temperature has an effect on the height of the bounce of a squash ball.

Extracts from this document...

Introduction

Heat on ball Investigation

Introduction Originally Gravitational potential energy (mph) is stored in a ball before its released. as  the ball falls and the speed increases The potential energy of the moving ball is changed to kinetic energy (1/2mv2) then it looses all the potential energy as soon as is touches the floor. If there is no energy loss the energy (I.e. P.E and K.E) remains the same

The ball deforms and slows down as it touches the ground. Here the balls kinetic energy is causing the ball to deform. When the ball is deformed some of the energy is stored as potential energy and another name for this energy is elastic potential energy and this in some cases this energy is changed into heat and sound and some is converted to heat and sound.

As soon as the ball losses all its speed and reaches its highest deformation only then it looses its kinetic energy and it stops moving. And when some of its energy Is changed to heat and sound its kinetic energy decreases than its original gravitational potential energy. Here all the energy (elastic PE + heat + sound) remains the same.

And then when the ball turns back into its original shape the elastic potential energy is then changed to kinetic energy.

As soon as the ball leaves the ground it will begin to slow down as it rises and its kinetic energy is changed back to gravitational potential energy. Since some of its original energy has been changed to heat and sound it will finish up with less gravitational energy than it began with i.e. the rebound height is less than the starting height.

Additional Information

A solid expands when it’s heated.

...read more.

Middle

Test 1

(cm)

Test 2

(cm)

Test 3

(cm)

Average

(cm)

1

26.0

26.0

27.0

26.3

2

27.0

27.0

27.0

27.0

3

28.0

28.0

28.0

28.0

4

28.0

28.0

28.0

28.0

5

28.0

28.0

28.0

28.0

I can see from this that thermal equilibrium was reached at 3 minutes because this was the point that 28cm at a bounce height was reached and because the height didn’t increase more than 28cm it means that thermal equilibrium was reached. This is why I am going to leave the ball in the water bath for 3 minutes for it to reach thermal equilibrium.

I Am going To investigate a appropriate height to let go of the squash ball , I will let go of  the squash ball at 20°C, 40°C and 70°C from different heights to find a height that worked well for all the temperatures. The heights I let go of the ball from were: 0.50m, 0.75m, 1.00m, 1.25m and 1.50m. To ensure the temperatures of the ball were correct I kept the ball in the water bath for 3 minutes as I understand from my earlier original results that 3 minutes is the time it takes the ball to reach thermal equilibrium.

You can understand from this  that 1 meter is a appropriate height that I can easily record all the heights down to the lowest temperature (0°C) and gives a first-class bounce height for 70°C so it satisfies both ends of the series of temperatures. This height gives a good choice of results so they can be shown easily in a graph and compared. I chose not to use the higher heights since even though they would also give a precise range of results and I would easily be able to understand the height of the ball at a 0°C temperature, it was unsuitable for my experiment since it meant that I would keep getting up onto the table to be able to reach the heights.

...read more.

Conclusion

To provide additional relevant evidence I could:

·        Use temperatures that go up in 5°C instead of 10°C so I would have more information to show the relationship between the temperature of a squash ball and its bounce height.

·        I could have a better way of seeing the bounce height by having a video camera set up about a metre away from the experiment to see where about the ball bounced and then have another camera close up to see a closer reading of the bounce height. When I play back the video, I would put it on slow motion and show it frame by frame recording the heights until the bounce heights start to fall. Then I would take the maximum recording I had for that temperature and that would be the bounce height. This would be very accurate because I would see a very close up measurement and because it would be in slow motion and frame by frame it clearly showed the bounce height and could clearly be read from the bottom of the ball. This is more accurate than using your eyes because the ball would bounce very quickly and you only have a split second to read the height and is very difficult.

MOHAMMED ABDUL KALIK SHAHEEN

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Investigating factors that affect the bounce height of a squash ball

    5 star(s)

    This was because, when dropped from the height of 1 m it was evident that the terminal velocity of the ball had not been reached by the time it hit the surface. I thought that increasing the highest drop height would allow me to find the height from which the

  2. The effect of the temperature on the viscosity of the syrup.

    Different parts of the syrup travels at different speeds. So it was important to consider the position which the sphere had been dropped at. Varying the position of the descent of sphere altered the increase in rate of velocity due to an increase in temperature.

  1. Investigation into the effect of temperature on viscosity

    The honey is left to drain off the ball so that only a small amount of honey is lost in the process. Temperature control methods: Heating the honey When reaching the higher temperatures it is required that the honey is heated using a Bunsen burner.

  2. Bouncing Ball Experiment

    This therefore provides accurate and reliable results. During the preliminary experiment it was established that time was not an important factor that had to be taken into account when deciding how many different heights to drop the ball from and the interval between those heights.

  1. Squash Ball and Temperature Investigation

    Does this invalidate the Law of Conservation of Energy? Where did that energy go? The energy that is not being used to cause motion is changed to heat energy and sound energy. After playing a game of tennis or racquetball, you will notice that the ball is warmer at the end of the game than at the beginning because

  2. Factors affecting the bounce of a ball

    Place two metre rules vertically on a door or wall so that you have the markings to measure anything up to two metres high. 2. Take one of the balls and hold it in line with the 1m mark. Then drop it and quickly bend to observe the highest height it reaches after the bounce.

  1. The bounce height of a squash ball under various temperatures.

    for a period of time, until the ball is the same temperature as the bath. This was carried out 3 times for each range of temperatures. Background physics: The property that allows the squash ball to bounce is called resilience.

  2. Examine the relationship between the height a ball is dropped from and the vertical ...

    Forces: AS the ball falls, gravity acts on it causing it to accelerate downwards. The earth will also move towards the ball, (because every action has an equal and opposite reaction) but because F=ma the earth will move only a tiny bit because of it's immense mass.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work