• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Parachute Investigation

Extracts from this document...

Introduction

Louis Franks 11PC July 29 2002 Parachute Investigation Method 1. Make a parachute from a sheet of clear plastic 50cm big, string (4, each 50cm long) and a small plastic canister. 2. Measure the fixed distance of which the parachute is going to fall from. 3. Drop the parachute containing no weights and measure the time it takes to land on the floor from being released as accurately as possible with a stopwatch. 4. Record the result in seconds. 5. Repeat with the same weight until sure of a constant result. 6. Repeat the process nine times adding 10g weights each time. 7. Calculate an average for each set of results. 8. Divide the average by the height it was dropped from to work out the velocity. ...read more.

Middle

We ended up with ten sets of results and did not go beyond, as the parachute tended to tangle up and fell too fast for us to measure accurately. For each different result, we repeated it at least three times so we could compare them until we were satisfied that they were constant and so reliable by eliminating the anomalous results. We then calculated an average for each one. Before this we carried out some preliminary work which included velocity and air resistance. Results in seconds Number of 10g weights Trial number 1 Trial number 2 Trial number 3 0 2.0 1.42:( 2.10 1 1.85 1.40 1.52 2 0.88 :( 1.14 1.18 3 0.90 0.93 0.93 4 0.88 0.93:( 0.72 5 0.74 0.79 0.75 6 0.59:( 0.90:( 0.65 7 0.60 0.63 0.63 8 0.84:( 0.69 0.54 9 Average does not include anomalous results :( = Anomalous result 2.6=height parachute falls from Av. ...read more.

Conclusion

Although the graph could have been more accurate to make it more reliable as the line of best fit is not definite. The evidence is still good enough to maintain a firm conclusion, as any inaccuracies would be too small to cause any prominent differences. Anomalous results could have been a consequence of many factors such as the time the parachute was dropped to the time the stopwatch was pressed may not have been in co-ordination. Or there may have been a slight draught which could have delayed the landing. I could have improved the evidence of the investigation by allowing a larger height for the parachute so the landing would last longer and the accuracy would improve when measuring. Also height could be added for the initial acceleration so it would not be included in the time, possibly 0.5m extra. We could have tried to extend the results to be more confident about the trend ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. The Area of a Parachute Compared To Its Rate of Descent

    The precise accuracy will be shown below. Percentage Error Calculation The best way to calculate the accuracy of one's results is to do a calculation based on them. This is shown in steps below. 1. Collect results 2. Calculate the mean (average)

  2. Squash Ball and Temperature Investigation

    With this increase of air pressure within the ball, the ball will deform less when it comes into contact with the floor than it would when it has a lower air pressure because constant, rapid collisions of the air molecules inside the ball help maintain the shape of the ball better at this higher pressure.

  1. Strength of a string practical investigation

    r�, to obtain the cross-sectional area of the string. 4. I will place the meter rule on the table, using sellotape to keep it steady. The G-clamp and pulley will also be clamped to the table at this time, pulley at the end of the table and G-clamp at approximately 0.7 metres from the pulley (as shown in Figure 1)

  2. Find out how a variable affects the terminal velocity of a parachute.

    Cut 4, 30cm strings 4. Put one string through each hole in the square and tie a knot so that the string will not come off the plastic sheet. 5. Take plasticine and use a weighing scale and weigh out 5g, 6g, 7g, and 8g of plasticine, correct to 1mg.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work