• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum investigation

Extracts from this document...

Introduction

Pendulum investigation

Plan

Aim

To investigate how the length of a simple pendulum will affect the time for a full swing.

Variables

Length

The length of the pendulum has a large effect on the time for a complete swing. As the pendulum gets longer the time increases. As the pendulum gets shorter the time decreases.

Air resistance

A big and light pendulum bobble would be affected by a major amount of air resistance. This might cause the pendulum to move in a different way.

With a little pendulum bobble there is very small air resistance. This can easily be observed because it takes an extended time for the pendulum to stop swinging, so only a small amount of energy is lost on each swing.

Gravity

The pendulum is motivated by the force of gravity acting on it.

The more gravity the shorter time it will take for a complete swing.

         The less gravity the longer it would take for a complete swing

Size of swing

The size of the swing does not have large effect on the time.

Mass

The mass of the pendulum does not affect the time at all.

Prediction
The diagram shows the arcs through which two pendulums swing. The red one is twice the length of the black one. The black arc is always at a steeper angle than the red arc, and always above it.

...read more.

Middle

10

10

25.41

2. Altering the mass of the bob

The mass was altered by a measurement of 20 grams. This had a small effect on the time.

length
(cm)

mass
(g)

displacement
(cm)

time (20 swings)
(seconds)

60

5

10

31.02

60

25

10

31.16

3. Altering the displacement of swing
the size of the swing was changed by a measurement of 20 cm and this had little effect on the time.

length
(cm)

mass
(g)

displacement
(cm)

time (20 swings)
(seconds)

60

10

10

31.05

60

10

20

31.39

From the trial data I found

...read more.

Conclusion

The even trend in the graph specifies that the results are accurate and dependable. There are no irregular results to be seen in the trend of the graph.

Reliability

No significant problems or difficulties were met when performing this investigation. The accuracy and reliability of the results and conclusions are incredibly good. From the accuracy method applied and for the range of values tested, it is quite understandable that the time for a simple pendulum takes for a complete swing is proportional to the square-root of the length.

Improvements

The procedure used was simple and straightforward and no difficulties were encountered. A small improvement could be made regarding the measuring of the length pendulum. A piece of wood, could be placed level with the point of suspension, and a set square could be placed along the flat side and just touching the bottom of the pendulum. This distance could then be measured extra accurately than trying to guess where the middle of the bobble is.

More attempts could be taken but I do not think it is necessary or would make a significant difference to the morals of the conclusion.

Longer lengths could be tried, up to whatever lengths desired. If the pendulum gets very long a stronger string will be needed and a bobble in ratio.

Extending the investigation

Extending the investigation would mean extend the range of lengths tested and observing if the same trend continues. Add more to the extension

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Determining the acceleration due to gravity by using simple pendulum.

    reads Zero. 4) Test the experiment neglecting the time to check if the mechanism works 5) Choose any length and record the time taken to travel the distance 6) Repeat procedure 5 for different lengths and record a graph to give out averages of the time.

  2. In this experiment I aim to find out how the force and mass affect ...

    P.E = K.E mgh = 1/2mv2 The formula can be simplified 20h = v2 SQRT(20h) = v This formula will give us the average velocity for the trolley going down a ramp of h metres high. Once we have found this we can actually use the equation for average speed

  1. Practical Investigation Into Viscosity

    0.18 0.180 40-60 0.18 0.18 0.18 0.18 50-70 0.17 0.18 0.19 0.18 Medium Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured 1 2 3 Average 0-20 0.32 0.33 0.32 0.323 10-30. 0.28 0.28 0.29 0.283 20-40 0.23 0.23 0.22 0.227 30-50 0.19 0.21 0.20 0.200

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    If not hanging at 90�, the wooden blocks need to be adjusted, either in the clamp or in relation to one another, so to achieve this. I also realised that it was necessary to make sure that the string is clamped vertically between wooden blocks.

  1. Squash Ball and Temperature Investigation

    Place thermometers in a book to prevent it rolling on the table. * Wear protective eyewear in case of any breakage happening. In the case of an emergency: * If broken glass on floor/bench - scoop up any pieces using a dustpan and brush.

  2. Investigating the amazingness of theBouncing Ball!

    The time between the bounces is used to work out the height reached by the ball between each bounce, using the equation height = -0.5 x -9.81 x(t/2)2, however this value is useless when plotted so using the decay constant: H = Hoe-^t the graph of Ln H/Ho against bounce

  1. Strength of a string practical investigation

    need, as I need three sets of results for each string, thus ending up with nine sets of results. If I was to continue into the next lesson, then I would have to set up my equipment again and this is not a fair test as I might be given

  2. Investigating pendulums.

    You just times the given period by the square root of the number of times bigger the length of string is you want to find the period for. So if we wanted to find the period if the string was 50cm then we would times the period for one oscillation

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work