• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum investigation

Extracts from this document...

Introduction

Pendulum investigation

Plan

Aim

To investigate how the length of a simple pendulum will affect the time for a full swing.

Variables

Length

The length of the pendulum has a large effect on the time for a complete swing. As the pendulum gets longer the time increases. As the pendulum gets shorter the time decreases.

Air resistance

A big and light pendulum bobble would be affected by a major amount of air resistance. This might cause the pendulum to move in a different way.

With a little pendulum bobble there is very small air resistance. This can easily be observed because it takes an extended time for the pendulum to stop swinging, so only a small amount of energy is lost on each swing.

Gravity

The pendulum is motivated by the force of gravity acting on it.

The more gravity the shorter time it will take for a complete swing.

         The less gravity the longer it would take for a complete swing

Size of swing

The size of the swing does not have large effect on the time.

Mass

The mass of the pendulum does not affect the time at all.

Prediction
The diagram shows the arcs through which two pendulums swing. The red one is twice the length of the black one. The black arc is always at a steeper angle than the red arc, and always above it.

...read more.

Middle

10

10

25.41

2. Altering the mass of the bob

The mass was altered by a measurement of 20 grams. This had a small effect on the time.

length
(cm)

mass
(g)

displacement
(cm)

time (20 swings)
(seconds)

60

5

10

31.02

60

25

10

31.16

3. Altering the displacement of swing
the size of the swing was changed by a measurement of 20 cm and this had little effect on the time.

length
(cm)

mass
(g)

displacement
(cm)

time (20 swings)
(seconds)

60

10

10

31.05

60

10

20

31.39

From the trial data I found

...read more.

Conclusion

The even trend in the graph specifies that the results are accurate and dependable. There are no irregular results to be seen in the trend of the graph.

Reliability

No significant problems or difficulties were met when performing this investigation. The accuracy and reliability of the results and conclusions are incredibly good. From the accuracy method applied and for the range of values tested, it is quite understandable that the time for a simple pendulum takes for a complete swing is proportional to the square-root of the length.

Improvements

The procedure used was simple and straightforward and no difficulties were encountered. A small improvement could be made regarding the measuring of the length pendulum. A piece of wood, could be placed level with the point of suspension, and a set square could be placed along the flat side and just touching the bottom of the pendulum. This distance could then be measured extra accurately than trying to guess where the middle of the bobble is.

More attempts could be taken but I do not think it is necessary or would make a significant difference to the morals of the conclusion.

Longer lengths could be tried, up to whatever lengths desired. If the pendulum gets very long a stronger string will be needed and a bobble in ratio.

Extending the investigation

Extending the investigation would mean extend the range of lengths tested and observing if the same trend continues. Add more to the extension

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Determining the acceleration due to gravity by using simple pendulum.

    Connect the release mechanism and the pad base on the floor with a timer. 3) Place the both the releaser and the receiver of the ball at a desirable length and make sure the time on the stopwatch or a digital stopwatch (or any source of a timer)

  2. In this experiment I aim to find out how the force and mass affect ...

    Conclusion My prediction was proved correct as the graphs clearly show that the speed does indeed increase when the ramp is raised higher. This is due to the fact that more potential energy is given to the trolley as it is raised higher - height is part of the formula

  1. Practical Investigation Into Viscosity

    The results of the experiments are as follows: Ball bearing Time taken (s) to descend 1 metre through water 1 2 3 Average Very small 1.92 1.96 1.94 1.940 Small 1.39 1.42 1.38 1.397 Medium 0.29 1.28 1.28 0.950 Large 1.27 1.30 1.29 1.287 Very large 1.64 1.62 1.63 1.630

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    This would reduce the risk of human error in counting. Errors and Actions taken to minimise them There was one particular problem that I came across when trying out my intended method in my preliminary experiment. This would cause an error in the results.

  1. Squash Ball and Temperature Investigation

    Having discussed above about how I will choose a ball for the experiment, I chose Ball 1 as it has a higher average than Ball 2 which means it's bounce back height was slightly higher than Ball 2's bounce back height.

  2. Friction Investigation

    And I was also careful to not present myself as a danger to anybody else in the lab. Table of Results: ANALYSING Trends and Patterns From the graph, I can see there is a straight-line relationship between the trainer's weight and the force of the friction it produces.

  1. Investigating the amazingness of theBouncing Ball!

    Therefore the return height reached by the ball will increase and so the decay constant will decrease. Method The rubber ball will be dropped from a height of 1m from the ground. This height will be calibrated with spirit measures and right angled traingles placed at the bottom to keep the metre rule perpendicular to the ground.

  2. Investigating pendulums.

    These are the controlled variables. If we were to change the number of oscillations we time, it would effect the overall results.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work