• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum Investigation

Extracts from this document...

Introduction

Pendulum Investigation A Pendulum is an object that swings back and forth around a fixed point if it is pulled aside and let go. Gravity makes it swing back and forth at a regular rate. The simple pendulum consists of a weight hanging at the end of a string or wire. The path travelled by the weight is called the arc of the pendulum. The period of oscillation is the time it takes the weight to pass back and forth once over this arc. The Italian physicist Galileo discovered the laws of the pendulum. He noticed that a hanging lamp would swing with an almost constant period, whether the arc was large or small. ...read more.

Middle

Therefore, in the above diagram, we can prove that the shorter the length of string, the faster it swings. D1 has the length of string 4, D2 9, and D3 16. If we put that into the formula, then we see that: D1. T= 2 D2. T= 3 D3. T= 4 This shows that my prediction was correct, D3 would take longer to swing. I also predict that different weight on the end of the string will make no difference to how fast the pendulum swings. I used my scientific knowledge, and a formula to work this out. Here is the formula : Acceleration is always the same, and all mass hits the ground at the same time. ...read more.

Conclusion

We used the range 10 cm, 20 cm, 30 cm, 40 cm, 50 cm, and 60 cm. We used the angle 90"a and weight 50 g. We timed 3 swings for each length and then worked out the average. Then we changed the angle we dropped the pendulum from. We used the range of degrees 30"a, 60"a, 90"a, 120"a, 150"a, 180"a. We used the weight 50 g and the length of string 30 cm. We then worked out the average again. All the results and averages were round up to 2 decimal places. Here are the results that we got: For weight change: For length change: For angle change: We made our results into graphs. My results show that my predictions were correct.. As you can see from the Pendulum Weight Changing Graph, the average is directly proportional to the length of string. As one increases, so does the other. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Squash Ball and Temperature Investigation

    o Increase in room temperature. Because the lab was occupied with many students carrying out a similar experiment with hot water, the room got warmer. This could affect the air molecules in the room, which could also possibly affect the speed of the ball as it is dropped due to the change in air resistance.

  2. Strength of a string practical investigation

    (Figure 2 from gpc.edu/~pgore/geology/geo101/ crustaldeform.php). This graph shows how the initial linear section of the graph is when strain is proportional stress. The area marked "X" on the graph is the elastic limit or yield point, this is the point of no return from this point the material is permanently deformed and can no longer return to its original state.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work