• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum.The length of the pendulum will affect the period (T). An increase in length will produce an increase in time. This can easily be seen when I look at the results table.

Extracts from this document...




The aim of this experiment is to investigation of gravity by sample pendulum affects the time for complete swings.


A pendulum is a device which consists of an object suspended from a fixed point that swings back and forth under the influence of gravity. This effect is known as gravitation. However simple it may seem, this structure is very beneficial in our everyday life for it is used in several kinds of mechanical devices such as the all popular grandfather clocks. In addition to this, a pendulum could determine the local acceleration of gravity. This is the case, as the strength of gravity varies at different latitudes and as gravity is one of the main forces acting on the pendulum, the acceleration of gravity could be noted. Further uses of the pendulum are found in the field of astronomy for some have been used to record the irregular rotation of the

...read more.


Let the bob swing backwards and forwards 20 times oppressed Then stopped the pendulum swinging and recorded the times. Then I repeated experiment with the same length 3 times.

Fair Test:

To make the experiment as fair as possible the same bob and equipment were used for each experiment. The length of pendulum was measured from the base of the split cork to the middle of the metallic bob. The angle at which the bob swung also had to be the same.


There are many accidents that could happen if this experiment was not carried out safely; below I have outlined a few simple guidelines to prevent such accidents occurring.




Bob swing

Could hit someone

Do not swing the bob from large angles

Clamp stand

Could fall over and hit someone

Make sure a large mass is holding it down

...read more.



I used the method proposed in my plan, taking three readings of each value and measuring the time taken for 20 oscillations rather than for 1. During the experiment, I observed that each oscillation for the same length of string seemed to be equal. This showed that the pendulum did not slow down as the number of oscillations increased. I took the safety measures described in my original plan.

During the experiment I was careful to use accurate measurements in order to obtain sufficiently accurate results, for example:

- The string was measured with a meter ruler, to the nearest cm, to
ensure that each measurement had a difference of exactly 10cm.

- The angle of amplitude will be measured with a protractor to the
nearest degree to ensure that the angle remains constant throughout
the experiment.

- A stopwatch will be used to measure the period accurately. The period
was measured in seconds, with the stopwatch measuring to a degree
of accuracy. However, I have rounded up each time to the nearest second to give appropriate results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Investigating a factor which can affect the period of a pendulum.

    3 star(s)

    x 0.5 we used a bob of mass 500g=1/2 kg = 39.48 x 0.1 4.9 = 8.06 x 0.1 = 0.806 T = V0.806 = 0.90 seconds ANALYSIS & CONCLUSION Graphs found on previous pages Conclusion: The graphs clearly show smooth curves with positive gradients which signify that the period increases as the pendulum's length increases.

  2. Marked by a teacher

    Which factors affect the time period of the swing of a pendulum?

    3 star(s)

    10cm is 6.83 seconds and the average time period for a pendulum with a length of 20cm is 9.26 seconds, this shows an obvious increase in the time period of the pendulum by approximately three seconds. My results concur numerically with my original data also as I predicted that the time period (using the formula)

  1. Determining the acceleration due to gravity by using simple pendulum.

    Rather, he used measurements based on pendulums. It is easy to show that the distance a body falls is proportional to the time it has fallen squared. The proportionality constant is the gravitational acceleration, g. therefore, by measuring distances and times as a body falls, it is possible to estimate the gravitational acceleration.

  2. Period of Oscillation of a Simple Pendulum

    This is also helped by the fact that the experiment was a very fair test. The pendulum mass was the same each time and the angle of release was identical each time. Secondly, I found that length is directly proportional to time squared.

  1. To investigate the time taken for the pendulum to oscillate for a time period.

    These results can still be plotted on a graph for analysis and therefore can still correctly show any valid trend. Safety: Considering this experiment ensures that pendulums have very little energy, the procedure is very safe as the pendulums won't hit anybody and even if they do it will be harmless.

  2. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    The percentage error worked out to be 0.612%. Since this is a very small value it shows that the results I got are quiet accurate to give a reliable value for acceleration due to gravity. EVALUATION: The experiment I have done is quiet accurate in that the percentage error is only 0.612%.

  1. Find which factors/variables affect a pendulums period (time taken to do one oscillation) and ...

    However I also predicted that mass would affect the pendulum, but it did not. I will prove why length does affect the pendulum and why mass does not in the scientific knowledge below. Scientific Knowledge backing my conclusion: The following explains why length affects the time taken for a pendulum to complete one full period and what the affect is.

  2. Factors that affect the period of a pendulum

    also shows a positive correlation between variable and the period of the pendulum, meaning that as the diameter is increased, the time it takes the pendulum to complete one oscillation also increases. The gradient of the line of best fit on this graph is 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work