• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Physic Coursework - Squash ball experiment

Extracts from this document...

Introduction

Physic Coursework Squash ball experiment Aim: My aim is to investigate what effect temperature has on the resulting bounce on a squash ball. Variables: 1. There are many variables to consider, such as 2. Pressure of air inside the squash ball 3. Type of surface the squash ball is bounced on 4. Height the squash ball is dropped from 5. Temperature of the squash ball 6. Material of the squash ball 7. Mass of the squash ball 8. Angle of surface that the squash ball is bounced on 9. Air resistance 10. Diameter of the squash ball 11. Temperature of surface that that squash ball is bounced on 12. Room temperature Prediction Through my scientific knowledge of the collision theory, I predict that as I increase the temperature of the ball, the bounce of the ball will increase as well. This is because as the ball gets hotter the particles in the ball gain energy and collide more. This means that when the ball hits the ground the particles collide so much that the ball is bounced higher. Therefore when I decrease the temperature of the ball the particles don't have as much energy so there is bounce but not as high. ...read more.

Middle

* I then measured the temperature using a thermometer. To reach the desired temperature for our results we used ice to cool the water. * I then placed the ball in the water for exactly one minute. * I then dried the ball and marked the set lengths we chose for our readings. * I dropped the ball from each length at the required temperature three times to gain the best results possible and also check for any anomalies. I dropped the ball on the same surface throughout the experiment. * I repeated this process for each of the set lengths. Conclusion: From the results I gathered I can conclude that the relationship between the increase in temperature and the height that the ball bounces, which has great similarities. For example, when the temperature was 90 C, the ball bounces at heights up to 48cm. Consider that when the temperature was 50 C, the ball only managed to bounce heights as high as 33cm. The results collected, back up my prediction, which was, as the ball gets hotter the resulting bounce is increase in height at each attempt. ...read more.

Conclusion

Evaluation: There were some problems during our experiment. These problems occurred as I was recording my results. No human eye would be able to record the height of the responding bounce of the ball. Because of this restriction I could only record my results to the nearest centimetre (cm). A solution to this is by using a video camera. Also the ball sometimes bounced off the meter ruler. This added to the list of problems. For future investigations I could use balls made of different materials to see how they would affect the bounce of the ball. To make the measuring of the heights even more accurate, we could use a camera that captures images at very high speeds, for example a flash camera. It can be important to know how different balls bounce in sport. In tennis the players need to adapt their game, throughout the day, to get the best possible result. When it's the afternoon the ball is given more energy, therefore bouncing off the tennis racket much faster and the players don't need to work as hard. However in the evening the players are forced to work harder due to the fact the sun's energy is not there, so the ball needs to be hit with more power. ?? ?? ?? ?? Melan Shah 11M ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. The Bouncing Ball Experiment

    If I conducted the experiment in the same place on the same surface for each height, the material of the floor could be kept constant. The person dropping the ball would be the same each time. They would always drop the ball without exerting any force on it at all; they would hold it lightly, and simply let it go.

  2. Investigating the relationship between drop height and bounce height when a ball is dropped.

    gradually increases to another certain point (around 1.4m) then begins to decrease again. It is a gradual decrease but you can still see that the average energy conversions all stay around 50% which therefore shows you once again, that the potential energy loss is about 50% each time from drop height 1 to drop height 2.

  1. 'The Effect of heat on a Squash Ball'.

    My objective is to see if temperature has an effect on the bounce of the ball. Each test will be done three times to ensure that I get the best results as possible. Preliminary Work For my preliminary work I used a 100ml of water.

  2. The Bouncing Ball Experiment

    as much as I can with my experiments to reduce the chance of human experimental error and to make my results reliable and accurate. I will go through all the factors that affect the bounce height of a ball, and change only the drop height.

  1. What Factors Affect the Bounce of a Squash Ball.

    Next, the ball was held so that the bottom of it was aligned with the height (e.g. 1.00 m). Meanwhile, another member of the team laid on the floor, facing the metre stick. The ball was then released when the member on the floor was ready.

  2. physics of the bouncing ball

    involved: changing the drop height of a single tennis ball on to a hard surface and measuring the bounce height. In the experiment as the drop height increases so did the energy in which the ball had. This meant it had more energy to convert to kinetic so on impact kept more energy to bounce higher.

  1. Investigating the factors that affect a bouncing ball.

    Scientific Knowledge Prediction: From the experiment that we are doing, I think that I would except to see the higher you drop the ball from the higher the ball will bounce. Because there is a bigger potential energy and therefore higher kinetic energy, so the ball will move faster and bounce higher.

  2. Find the realtionship between gravitational potential and kinetic energy

    as possible, and covered a range of heights from 11.0 centimetres to 25.0 centimetres and not above that, as the length of the ramp did not allow so. Also, the results obtained were narrowed to � each side of the result.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work