Physics of racing cars

Authors Avatar

Physics of racing cars

Racing cars are high performance cars. In order for them to be fast the cars body (and interior must be very light).

By re-arranging Newton’s 2nd it can be seen that the larger the mass of the car the smaller the acceleration the car will have.

For the car to accelerate (or decelerate) there must be some friction in between the cars tyres and the road surface. This traction helps the car to move at a very high speed and if the traction isn’t there the car won’t move even though the tires are rotating. This can be seen when the road surface is icy and the cars loose grip, the wheels are rotating but the car doesn’t move very fast. The force required to slide a tyre is called the adhesive limit of the tyre, or sometimes the stiction.

The formula F       µN shows the relationship between the frictional force and the surface the tyre is moving on. F is the frictional force, N is the normal reaction between on the tyre and µ is the coefficient of the friction, the more the µ value the rougher the surface is. The maximum frictional force provided by the tyre is given by µN, beyond this value slipping starts to occur. This equation implies that the frictional force made by the tyres is independent of the width of the tyre. A car fitted with a wider tyre is creates the same friction as a thinner tyre because the thinner tyre creates more pressure point hence created more contact between the tyre and road surface whereas, the wider tyre covers more surface area therefore creates the same grip between the tyre and surface.

Join now!

Newton’s second law (F=ma), shows that when the traction force is generated the car accelerates forward. Newton’s third law, every action has an opposite and equal reaction shows that when the car does accelerate the driver experiences a force opposite and is pushed backwards into the seat. When the steering wheel is turned the driver tries to get the front tyres to push a little sideways on the ground, and by Newton’s third law the ground pushes back, which causes little sideways acceleration. This changes the sideway velocity. The acceleration is relative to the sideways force and inversely relative to ...

This is a preview of the whole essay