• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10

Physics Pendulum Experiment

Extracts from this document...

Introduction

                                                     Kasim Hassan

Physics Coursework

In this investigation, I am going to find the time taken for a basic pendulum to perform a full oscillation (to and fro).

Oscillation is the regular movement of a mass back and forth; from one direction to another e.g. a simple pendulum swinging back and forth. A pendulum is a weight on the end of a rigid rod, which, when given some initial lift from the vertical position, will swing back and forth under the influence of gravity over its central (lowest) point. A torsion pendulum consists of a body suspended by a fine wire or elastic fibre in such a way that it executes rotational oscillations as the suspending wire or fibre twists and untwists.

The aim of this experiment is to find one of the factors affecting the mass of oscillation on a wire. We will be keeping the length of wire the same throughout the entire experiment, but we will change the mass of the wire.

The pendulum will be string, with a weight hanging on the end.

The factor that will affect the time taken for one full oscillation is the mass of the weight.

Oscillation is the regular movement of a mass back and forth; from one direction to another e.g. a simple pendulum swinging back and forth.

...read more.

Middle

100

8.57

9.03

8.43

8.49

9

8.7

0.87

0.76

300

12.19

11.8

11.84

11.96

12.01

11.96

1.196

1.43

500

17.44

17.16

17.28

17.32

17.2

17.28

1.728

2.99

700

20.35

20.31

20.57

20.29

20.51

20.41

2.041

4.17

900

22.63

22.26

21.97

22.09

22.23

22.24

2.224

4.95

Prediction

My prediction is that the more weight that is added to the bottom of the spring, the more energy is stored, and therefore will create larger oscillations. This is because according to my theory, the heavier the mass put on the spring, the larger the extension will be. So, if this is correct, there will be more energy, therefore resulting in larger oscillations.

Evaluation

In my opinion, the experiment went fairly well. I managed to obtain a full set of results, which were mostly accurate, and which I managed to make good use of. I was initially surprised at how easy the experiment went, and how I managed to almost instantly obtain accurate results.

This investigation has been successful because I have completed my aim and showed this by producing a graph with time against mass.

Although the majority of results were within range, I believe I could have made the experiment even more successful. This is due to the few outliers there were.

I could have possibly narrowed the gaps between the masses, by using 50g masses instead of 100g, in order to obtain a larger set of results.

The second way I could have improved my experiment, is to increase the number of readings taken to possibly 7 or 10.

...read more.

Conclusion

  • Ensure the spring is not loaded beyond the elastic limit.

Conclusion

After analysing my results, I have come to the conclusion that the longer the weight of the mass, the longer per 5 oscillations.

I immediately noticed from my graph and table of results, that as the mass became heavier, the time per oscillations increased, thus suggesting my prediction is correct.

This therefore shows there is a strong correlation between weight of the mass, and the time per 5 oscillations.

In order to complete my graph of curve of best fit, I divided the average time by 10.

Then in order to calculate the line of best fit, I squared the results in the curve of best fit.

After looking at my graphs, I can see there are a few anomalies, particularly on the graph with the curve of best fit. Other then this, I believe my results are fairly accurate, thus suggesting my experiment, on a whole was done well.

Due to the lack of major spread in my data, I do not feel the need to include error bars in my graph.

I believe the results on the graph with the line of best fit, were particularly well. There is only one slight anomaly at 300g, meaning that the results are not fully perfect. This is not hugely significant however; as the straight line is in line with 0g meaning the experiment was fairly successful.

PHYSICS      COURSEWORK

                   KASIM HASSAN

                              11W

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

This is a good attempt at a report, although the structure is not correct.
1. The method section is well written.
2. The evaluation shows a good level of detail.
3. The table of results shows a lot of data.
4. The beginning section needs to be divided up using subheadings.
5. The conclusion does not attempt to explain the pattern in the results.
6. The report itself needs to be restructured.
*** (3 stars)

Marked by teacher Luke Smithen 29/05/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The aim of this experiment was to compare the elasticity of arteries and vein ...

    4 star(s)

    Method: A retort stand and clamp were taken. The clamp was positioned at approximately 60cm from the base of the stand. A hook was then attached to the clamp. The ring of artery or vein, cut to approximately 2-3mm in thickness, was then placed at the end of the hook.

  2. Determining the acceleration due to gravity by using simple pendulum.

    It would be interesting to try shorter and shorter lengths although a limit would be reached when the pendulum moves too quickly to be accurately counted. It may be possible to have some sort of electronic detection system that could automatically count and time the swings.

  1. Investigating the effect of mass on a parachute

    result because it is just marginally inaccurate and the point after it continues to fit the general pattern. The method I used through the experiment was clear and easy to understand and go through. However, I think that I put too many points on the method which was not particularly necessary as this made my plan complicated.

  2. How does the weight of an object affect the friction it has on the ...

    At this point, friction is said to be limiting. It can be shown experimentally that Fmax is proportional to R (downward force, or weight), fmax=?R The constant of proportionality, which is always given as the symbol "�", is called the coefficient of friction.

  1. Helicopter Investigation.

    the greater the velocity (in this case terminal velocity). Since u is always 0 in our experiment, this does not influence the relationship between the time taken to reach terminal and terminal velocity, and the above reasoning still holds. However I predict that our experiment will support the law V=

  2. The Physics of Paper Helicopters

    Because there are forces acting on different sides of the helicopter, and in opposite directions, the helicopter will spin (anti-clockwise in this diagram). Method To take my readings I will be dropping the paper helicopters down a flight of stairs, and measuring the time taken to fall to the bottom.

  1. Factors affecting acceleration

    1. Velocity = Time taken (s) On the second roll, the time it takes to roll from the top to the bottom will be measured. I already know the initial velocity to be zero, so using the final velocity and the time it takes the ball to roll down the ramp; I can work out the acceleration of the ball.

  2. Report on Newton's laws of motion

    opposite in direction applied on and by two different bodies (bookrags, n.d.). Some examples of the third law: 1. What enables us to walk? To move forward we must push toward the back on the ground with one foot, according to Newton?s third law, the ground pushes forward, moving us ahead.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work