• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10

Physics Pendulum Experiment

Extracts from this document...

Introduction

                                                     Kasim Hassan

Physics Coursework

In this investigation, I am going to find the time taken for a basic pendulum to perform a full oscillation (to and fro).

Oscillation is the regular movement of a mass back and forth; from one direction to another e.g. a simple pendulum swinging back and forth. A pendulum is a weight on the end of a rigid rod, which, when given some initial lift from the vertical position, will swing back and forth under the influence of gravity over its central (lowest) point. A torsion pendulum consists of a body suspended by a fine wire or elastic fibre in such a way that it executes rotational oscillations as the suspending wire or fibre twists and untwists.

The aim of this experiment is to find one of the factors affecting the mass of oscillation on a wire. We will be keeping the length of wire the same throughout the entire experiment, but we will change the mass of the wire.

The pendulum will be string, with a weight hanging on the end.

The factor that will affect the time taken for one full oscillation is the mass of the weight.

Oscillation is the regular movement of a mass back and forth; from one direction to another e.g. a simple pendulum swinging back and forth.

...read more.

Middle

100

8.57

9.03

8.43

8.49

9

8.7

0.87

0.76

300

12.19

11.8

11.84

11.96

12.01

11.96

1.196

1.43

500

17.44

17.16

17.28

17.32

17.2

17.28

1.728

2.99

700

20.35

20.31

20.57

20.29

20.51

20.41

2.041

4.17

900

22.63

22.26

21.97

22.09

22.23

22.24

2.224

4.95

Prediction

My prediction is that the more weight that is added to the bottom of the spring, the more energy is stored, and therefore will create larger oscillations. This is because according to my theory, the heavier the mass put on the spring, the larger the extension will be. So, if this is correct, there will be more energy, therefore resulting in larger oscillations.

Evaluation

In my opinion, the experiment went fairly well. I managed to obtain a full set of results, which were mostly accurate, and which I managed to make good use of. I was initially surprised at how easy the experiment went, and how I managed to almost instantly obtain accurate results.

This investigation has been successful because I have completed my aim and showed this by producing a graph with time against mass.

Although the majority of results were within range, I believe I could have made the experiment even more successful. This is due to the few outliers there were.

I could have possibly narrowed the gaps between the masses, by using 50g masses instead of 100g, in order to obtain a larger set of results.

The second way I could have improved my experiment, is to increase the number of readings taken to possibly 7 or 10.

...read more.

Conclusion

  • Ensure the spring is not loaded beyond the elastic limit.

Conclusion

After analysing my results, I have come to the conclusion that the longer the weight of the mass, the longer per 5 oscillations.

I immediately noticed from my graph and table of results, that as the mass became heavier, the time per oscillations increased, thus suggesting my prediction is correct.

This therefore shows there is a strong correlation between weight of the mass, and the time per 5 oscillations.

In order to complete my graph of curve of best fit, I divided the average time by 10.

Then in order to calculate the line of best fit, I squared the results in the curve of best fit.

After looking at my graphs, I can see there are a few anomalies, particularly on the graph with the curve of best fit. Other then this, I believe my results are fairly accurate, thus suggesting my experiment, on a whole was done well.

Due to the lack of major spread in my data, I do not feel the need to include error bars in my graph.

I believe the results on the graph with the line of best fit, were particularly well. There is only one slight anomaly at 300g, meaning that the results are not fully perfect. This is not hugely significant however; as the straight line is in line with 0g meaning the experiment was fairly successful.

PHYSICS      COURSEWORK

                   KASIM HASSAN

                              11W

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

This is a good attempt at a report, although the structure is not correct.
1. The method section is well written.
2. The evaluation shows a good level of detail.
3. The table of results shows a lot of data.
4. The beginning section needs to be divided up using subheadings.
5. The conclusion does not attempt to explain the pattern in the results.
6. The report itself needs to be restructured.
*** (3 stars)

Marked by teacher Luke Smithen 29/05/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The aim of this experiment was to compare the elasticity of arteries and vein ...

    4 star(s)

    To the ring of artery a mass carrier was placed, to which the force was then applied. A ruler was used to measure the distance the vessel had stretched after this force had been applied. The sketch below reiterates this method.

  2. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    to measure the length of the string. To record the time of one oscillation, I will hold the pendulum with the string taut at an angle to it's original position (as shown in Fig. 2) I will release the pendulum without applying any force to it, so as not to

  1. Investigate to see if adding mass to a cupcake case will increase the speed ...

    This graph is very basic yet it can help you see these tests in a whole different light. There is a point that is slightly out of place but that has the same reason as my previous result, the cases are reaching terminal velocity.

  2. How does the weight of an object affect the friction it has on the ...

    The mass of the block will be altered using masses of 50g, 100g, 1kg and so on. The same experiment will be repeated using three different surfaces. This will include 3 different types of sand paper. All the readings will be written down carefully, averages will be calculated and graphs will be plotted for clear analysis of the results.

  1. Investigate how the weight of an object affects the force required to overcome friction.

    It can also be assumed that the static and dynamic friction is directly proportional to the weight as all of my points lie either on or very near the line of best fit, they all show very strong positive correlations.

  2. Period of Oscillation of a Simple Pendulum

    Below is a diagram showing the forces involved when a simple pendulum swings. In theory, both pressure and temperature will have a minute effect on the rate of oscillation. This is because the higher the pressure, the more air molecules there are to act on the pendulum.

  1. Factors affecting acceleration

    look like, as these seemed like a good range of masses to use. To make it a fair test I will need to release the car from the same height on the ramp for each test. The further the car falls (downwards), the faster it will go so if I

  2. Report on Newton's laws of motion

    In other words: F12 = - F21. In Newton?s second law of motion, what matter is determining the acceleration of an object by knowing the value of the forces applied on It., while the third law motion interested more in a pair of forces which are equal in magnitude and

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work