• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

Plan: The effect of the end product, phosphate, on the enzyme phosphatase

Extracts from this document...

Introduction

The effect of the end product, phosphate, on the enzyme phosphatase 1. Plan Phosphatase enzymes release phosphates from a variety of substrates for synthesis of nucleotides, phospholipids, etc. They are found in both plant and animal tissues and can be classified as acid or alkaline depending on their optimum pH. In this experiment an acid phosphatase from potato was used. Hypothesis Since phosphate is a product of phosphatase activity, it may act as an end product inhibitor of the phosphatase enzyme, therefore slowing down the enzyme-catalyzed reaction. Background knowledge Enzymes are biological catalysts which speed up the metabolic reaction inside the cells. Enzymes are proteins and therefore can function because of their specific 3D shape. The active site is part of the molecule which allows the substrate to enter and form enzyme-substrate complex. If the shape of the active site changed, the substrate will not fit in, therefore the enzyme cannot function properly. The activity of enzyme is not only affected by temperature, pH, but also by enzyme inhibitors. These are the substances which can reduce the activity of enzymes. There are two types of enzyme inhibitors which refer to competitive and non-competitive inhibitor. Competitive inhibitor is a molecule which has a similar shape to the substrate, competing with the substrate for the active site of the enzyme and the inhibition can be either reversible or irreversible. The reversible inhibition means the inhibitors form a loose association with the enzyme and may become detached to the enzyme later, thus enabling the enzymes to function again. Irreversible inhibition means that the inhibitors combine permanently with the enzymes, making it impossible for substrates to react. Non-competitive inhibitor is a molecule which does not enter the active site of the enzyme but changes its shape by entering the other part of the enzyme, leaving the enzyme unable to work. However, Cells always contain many natural inhibitors which control the rate of metabolism and known as the reversible non-competitive inhibitor. ...read more.

Middle

Then place the two test tubes opposite to each other in the centrifuge, put the lid back and centrifuge for bout 5 minutes. After that, pour the supernatant into a clean test tube. This is used as the enzyme suspension. Label 15 test tubes A1-A5, B1-B5, C1-C5 and add 5 cm3 buffer from beaker 1 to tube A1, B1, C1 by using the same syringe; then using the same syringe add 5cm3 buffer from beaker 2 to tubeA2, B2, C2 and continue this same procedure step wise to beaker5. Add 1cm3 of the 1% phenolphthalein phosphate to each tube by a 1 cm3 syringe. Then use a kettle to make some hot water and then mix with cold water in the 1000ml beaker. Use a thermometer to stir and add any either cold or hot water until the temperature keeps at steady 30?. Then add 1 cm3 of enzyme suspension to each tube and mix them well with 5 different stirring rods, e.g. one rod stir A1,B1,C1and the other one stir A2,B2,C2 and so on. Place them together in the 30? water bath and at the same time start the stop clock. During the incubation, add any hot water if temperature drops. After being incubated for 20 minutes, put all the test tubes out of the water bath and place them back on the rack. Add 5cm3 of 10% sodium carbonate solution to each tube and mix as before. The tubes can now be stored in a fridge until the next day if required. Then record the color of each test tube and measure the intensity of the pink colour using a colorimeter with a 550nm filter. Record the absorbance. Present them in a table with headings. Then calculate the average absorbance for each concentration of sodium phosphate by using the value of A1, B1 and C1 for 0M, A2,B2 and C2 for )0.05M and continue this procedure to A5, B5 and C5. ...read more.

Conclusion

First I will make 7 buffer 5 solution each contains sodium carbonate with concentration 0.0, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45 mol/cm respectively. Label them from A to D. Second I will choose a big potato to extract the enzyme phosphatase in the same way of last experiment. Then I will prepare 4 sets of test tubes each contains 7 test tubes. Label them from A1 to D7. Then add buffer A to test tube sets A, buffer B to test tube sets B and so on. Add 1cm of the 1% phenolphthalein phosphate to each tube by a 1 cm syringe. Stir the enzyme suspension well and add 1cm of it into each test tube and mix them well. Then put all the test tubes in the same water bath of 30?. After 20 min incubation, and assistant and I will take them out of the water bath and add sodium carbonate to each test tube at the same time to stop the reaction. Then use a colorimeter with precise division to quantify the color change in each test tube(from colorless to pink). Calculate the average of A1 B1 C1 and A2 B2 C2 and so on. Draw these 7 values on a graph paper and also the error bar. Deducing from the results of last experiment, I predict that the graph pattern would be a straight line with negative gradient, and between the sodium phosphate concentration 0.35 and 0.45 mol/cm, the rate of reaction will be 0. Investigation 2 To investigate whether the result of the investigation, the end product effect is only specific to phosphatase in the potato, or has a commonness to all the enzymes, I will carry out the following two experiments. One will be the same process as the investigation of end product effect but use the beansprouts to extract the enzyme phosphatase. I predict that the rate of reaction decreases as the concentration of sodium phosphate increases and the pattern of the graph will be the same as the potatoes'. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Life Processes & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

5 star(s)

This is a very well written report that demonstrates a good understanding of scientific processes and methods.
1. The background knowledge section is well written and concise but should include references.
2. The variables section is well thought through.
3. The method section should be simplified and restructured.
4. The data is presented well.
5. The conclusion is detailed but again needs references.
6. The evaluation is the strongest section in the report and shows good statistical knowledge.
***** (5 stars)

Marked by teacher Luke Smithen 01/05/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Life Processes & Cells essays

  1. Marked by a teacher

    Isotonic Point of Potatoes

    5 star(s)

    * Work out the difference in the mass of the potato cylinders before and after keeping them in the different solutions. * Plot a graph using the average values of the change in mass and hence find the isotonic point of potato (where the change in mass is zero)

  2. Marked by a teacher

    BiologY Lab report

    3 star(s)

    My results clearly support my hypothesis. However the results of my experiments are not that reliable. As there might have been minor mistakes that I would have done unknowingly or might have occurred due to fault in apparatus.

  1. A investigation into the effect of inhibitor concentration on the enzyme catalase.

    This also consists of two types: Competitive Inhibitor- These compete with the substrate for the active sites of enzyme molecule. The inhibitor may have a structure that permits it to combine with the active site. While it remains bound to the active site, it prevents a substrate molecule from occupying that site and so reduces the rate of reaction.

  2. The effect of acid on the cell membrane

    water for 3 minutes to wash off any pigment that has been released. 3. Make up different concentrations of Hydrochloric acid using 1.0 molar acid and distilled water. I made up the concentrations as follows: * 1.0 molar used 20cm� HCl, 0cm� water * 0.9 molar used 18cm� HCl, 2cm�

  1. Investigating the effect of changing the concentration of an acid on the rate of ...

    Prediction I predict that as the concentration of the acid is doubled, the rate of diffusion will double. I believe this because if the concentration is doubled, there are twice as many HCl molecules per unit volume, so the concentration gradient is doubled (twice as steep).

  2. Aim To determine the water potential of a potato tuber cell

    With blotting at exactly the same extent the excess water will not contribute to the mass change and so the results will more truly reflect my independent variable. My results are accurate and reliable. There is no anomalous result as you can see on the graph that all the points are laid on the line of best fit.

  1. What is the difference in Vitamin C content between orange juice and orange squash?

    Results: After conducting this experiment, I have obtained the results for all three tests, with three results and an average for each test, in order for me to identify how much Vitamin C there is in fresh orange juice and orange squash, and which liquid has more.

  2. Influence of pH on the activity of potato Catalase

    as the rest group 6's result are fairly accurate in conjunction with the other groups. I have made two assumption for the possible errors. However the other two groups result were not correct either as they were too fast, because it is a lower pH it should have taken more time, with in the region of about 30-40 secs.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work