• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12

Planning experimental procedures.

Extracts from this document...

Introduction

Skill Area P : Planning experimental procedures: Information: Word equation: Hydrochloric acid (s) + Calcium carbonate (aq) ==> Carbon dioxide (g) + Calcium Chloride (aq) + Water (l) Chemical equation: 2HCl (s) + CaCO3 (aq) ==> CO2 (g) + CaCl2 (aq) + H2O (l) Ratio: 2 : 1 ==> 1 : 1 : 1 Molar ratio in thousandths: 0.002 : 0.001 ==> 0.001 : 0.001 : 0.001 The above equation shows when two moles of hydrochloric acid are added to one mole of calcium carbonate the products made are one mole of carbon dioxide, one mole of calcium chloride and one mole of water. Introduction: In a chemical reaction, the starting materials are called the reactants, and the finishing materials are called the products. If the reactants take a short time to change into products the reaction is a fast reaction. If the reaction takes a long time to change into the products the reaction is a slow reaction. The factors which can alter the reaction are: * Temperature because as the temperature is increased, the ions in the reactants gain more kinetic energy, and so move faster leading to a higher rate of reaction. Thus, there is a greater frequency of collisions and with a greater force i.e. they move more vigorously. So, there is a greater chance the reactants will react and they will then react faster. * Concentration of the reactants because if you increase the concentration of the reactants, there would be more molecules in the same volume and so the molecules would collide more often. So, the energy of the collisions will remain the same (as long as the temperature is kept constant), but the molecules will collide more often (as there are more of them) and so there is a greater chance of them reacting. Therefore increasing the concentration of the reactants would increase the rate of reaction. ...read more.

Middle

? 1 moles / dm3 Volume ( litres ) 0f HCl = 0.002 Moles 1 mole / dm3 Skill Area P : Planning experimental procedures Volume ( litres ) of HCl = 0.002 litres = 2 cm3 However I shall multiply the volume of hydrochloric acid by four to create 8 cm3 instead of 2 cm3 which as it is an easier amount to use. I had to find the volume of carbon dioxide evolved from reacting calcium carbonate and hydrochloric acid .To make 8cm3 for a 0.5 Molar solution of Hydrochloric acid this formula is used: No moles of Hydrochloric acid = Volume ( litres ) ? Concentration ( moles / dm3 ) No moles of Hydrochloric acid = 0.008 litres ? 0.5 moles / dm3 No moles of Hydrochloric acid = 0.004 Moles The ratio of the reactants and products is seen below in the equation: Chemical equation: CaCO3 + 2HCl (s) ==> CO2 (g) + CaCl2 (aq) + H2O (l) Ratio: 1 : 2 ==> 1 : 1 : 1 Molar ratio in thousandths: 0.002 : 0.004 ==> 0.002 : 0.002 : 0.002 The molar ratio in thousandths highlighted in red is the ratio which is needed. It shows when 0.004 Moles of Hydrochloric acid is used 0.002 Moles of Carbon dioxide is evolved. At room temperature and pressure ( RTP ) one mole of any gas will have a volume of 24 dm3 ( 1dm3 = 1 litre = 1000 cm3 ) and the following formula is used: Volume of CO2 = Moles of gas ? 24,000 cm3 Volume of CO2 = 0.002 ? 24,000 cm3 Volume of CO2 = 48 cm3 Therefore the amount of carbon dioxide evolved is 48cm3 when 8cm3 of 0.5 Molar hydrochloric acid is used. To make 8cm3 for a 1.0 Molar solution of Hydrochloric acid this formula is used: No moles of Hydrochloric acid = Volume ( litres ) ...read more.

Conclusion

This prevented it reacting with the hydrochloric acid as well as it should have, and so lowered the rate of reaction. * although the chips had the same mass, they had different surface area. This did not make the investigation a fair test, as those chips with a greater surface area had a higher rate of reaction, and those chips with a lower surface area had a lower rate of reaction. * I could only measure the gas syringe to the nearest cm3 and I found this to be not a very high accuracy. This limited the accuracy of my results. * the room temperature may not have been constant, causing the particles in the hydrochloric acid to have different kinetic energy, causing different rates. * Not every single drop of the hydrochloric acid or the distilled water could be removed from the measuring cylinders, and some of it remained in the measuring cylinder. * It was difficult to simultaneously look at the stop-watch to see the time and look at the gas syringe to see the volume of gas released. Time was wasted in reaction time and this would have affected the results slightly. Further Improvements * more duplicates could have been taken, so that my results would be more reliable. * a burette could have been used to measure out the hydrochloric acid and the distilled water. * more concentrations could have been used. By taking more concentrations, I would have more points on my final graph, leading to a greater accuracy. * the room temperature could be measured every 15 minutes while doing the experiments to make sure that it does not vary too much. this is a test area 19/3/2001 we are looking to see if the computer crashes, if so how long it takes it has now been on for half an hour and it is working very well 2.00pm started- time time now 2.30pm time now 2.45pm timre 3.00pm why is it not crashng, what is the matter time now is 3.15pm I am going to switch off and start again. restarted 3.30pm ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    To see how the concentration of acid, reacting with potassium carbonate, affects the rate ...

    4 star(s)

    Volume of distilled water (cm3) Equation for working out the mole concentration Concentration of solution (M) 20 0 (2 x 20) � 20 2.00 20 5 (2 x 20) � 25 1.60 20 15 (2 x 20) � 35 1.14 20 20 (2 x 20)

  2. Investigating the effect of temperature on the rate of reaction between hydrochloric acid and ...

    I identified the anomalous results by highlighting them. All of the results in the second experiment of 70� were anomalous. I left these out of the calculations for average and highlighted them to show they are anomalous. The following caused problems with the experiment: - - The acid was a different concentration from one experiment to another.

  1. To investigate the rate of reaction between different concentrations of hydrochloric acid with metal ...

    directed to the ion as a combination of a hydrogen and a water molecule, the norm is to call it the, "the hydrogen ion" and use the symbol H+(aq) ) Below is a diagram of the above formulae, with H3O+(aq)

  2. What Factors Affect the Rate of Reaction Between Hydrochloric Acid and Calcium Carbonate?

    volume of carbon-dioxide given off; this method seemed at first to be simple and accurate.

  1. Investigate the factors, which affects how quickly Calcium carbonate reacts with hydrochloric acid.

    If a solution is more acid particles there will be more collision per second between the reacting particles, so if we keep the amount of same amount of acid particles in thisd expermint it would not effect our results. Size of marble chip- the size of the marble chip will affect our experiment because this dictates the surface area.

  2. To investigate the factors affecting the volume of carbon dioxide produced when a carbonate ...

    Preliminary Results Mass of CaCO3 (g) Volume of 2M HCl (cm3) Volume of CO2 Produced (cm3) 0.1 40 0.4 0.5 25 73 0.25 25 31 0.1 25 0.5 0.15 25 17 0.6 25 100 + (unreadable) 0.55 25 76 Preliminary Conclusion Firstly, I tried reacting a volume of 40cm3 of HCl with a mass of 1g of CaCO3.

  1. The factors affecting the volume of Carbon Dioxide gas produced when a carbonate reacts ...

    All the apparatus should be placed in their regular place to avoid confusion. Fair Test I shall try to keep the following things the same: 1. Acid- Hydrochloric acid 2. Volume of acid- 100ml 3. Same concentration of acid- 2mol 4.

  2. The Rates of Reaction of Metals with Acid.

    Remove the conical flasks from the water bath and wash with distilled water. 10) Repeat stages 2 to 8 twice more and record the results. For triplicate results. 11) Once 3 results have been obtained for 30�C for all acids change the water bath temperature to 35�C 12)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work