• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Practical investigation into Viscosity in liquids (Stokes Law).

Extracts from this document...

Introduction

Practical investigation into Viscosity in liquids(Stokes Law)

Introduction

When dealing with fluid/mechanical systems, it is important to know what affects the rate of descent of an object through a liquid.

There are many factors that affect the descent of an object through a liquid such as:

1) Temperature of the liquid

2) Mass* of object

3) Size/surface area of object

4 Viscosity of liquid

5) Angle of descent

Temperature

I would like to investigate the correlation between temperature and time of descent. Reading suggests that the colder the liquid the longer it will take for the object to reach the bottom.

Mass*& Surface area/size

Gravity accelerates at 9.81 ms-1 independent of mass. Hence increasing the mass will not affect the experiment of surface area. Thus using an object of various sizes it would be possible to investigate the proportionately of size on the descent of the object.

Viscosity

I feel it is important to investigate the affects of how a more viscous liquid would impede the progress of an object descending through a liquid. Therefore I have included this factor into my investigation.

Angle of descent

I would like to observe the affects of the object descending at an angle. Such at sediment in a bottle is there a way in which bottles should be stored that may hasten descent?

Aim

...read more.

Middle

Now that I had my first set of results, I thought I would introduce a variable of five differently sized ball bearings. This enabled me to investigate the surface area, mass* and how this effected the rate of descent.

The results of experiment 1 are as follows:

Very Small
Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured
1 2 3 Average
0-20 0.19 0.21 0.20 0.200
10-30. 0.17 0.18 0.20 0.183
20-40 0.18 0.19 0.20 0.190
30-50 0.20 0.18 0.19 0.190

Small
Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured
1 2 3 Average
0-20 0.24 0.25 0.24 0.243
10-30. 0.20 0.21 0.21 0.206
20-40 0.18 0.18 0.19 0.183
30-50 0.17 0.19 0.18 0.180
40-60 0.18 0.18 0.18 0.18
50-70 0.17 0.18 0.19 0.18

Medium
Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured
1 2 3 Average
0-20 0.32 0.33 0.32 0.323
10-30. 0.28 0.28 0.29 0.283
20-40 0.23 0.23 0.22 0.227
30-50 0.19 0.21 0.20 0.200
40-60 0.21 0.20 0.20 0.203
50-70 0.20 0.20 0.21 0.203


Large
Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured
1 2 3 Average
0-20 0.26 0.28 0.28 0.273
10-30. 0.23 0.22 0.20 0.217
20-40 0.20 0.21 0.20 0.203
30-50 0.20 0.19 0.20 0.197
40-60 0.20 0.20 0.20 0.200
50-70 0.20 0.19 0.2 0.197

Very Large
Distance Timed (cm) Time taken(s) for ball bearing to pass through distance measured
1 2 3 Average
0-20 0.33 0.32 0.30 0.317
10-30. 0.28 0.29 0.27 0.280
20-40 0.27 0.26 0.26 0.263
30-50 0.23 0.24 0.25 0.240
40-60 0.22 0.23 0.23 0.227
50-70 0.22 0.22 0.22 0.220

Experiment 1.2

The second part of the first experiment measured the time taken for five differently sized ball bearings to descend through water. The purpose of this part of the experiment was to make it more clear how surface area and mass* affects the rate of descent.

At this point and introduction of a sixth ball was used.

...read more.

Conclusion

3) I have found that the angle in which the ball bearing descends through will decrease the speed of when it will reach the bottom. However as I mentioned in the discussion an extra force was acting upon this and therefore made this experiment invalid.

4) The final conclusion to be drawn from my investigation, is that the ball bearings seemed to reach their terminal velocity in the same timed interval. For experiment 1 it was 40-60 cm and for experiment 2 this was also 40-60. Therefore I would be able to conclude with a third liquid that it may be possible that the liquid does not effect the point in which a ball bearing reaches its terminal velocity.

However I can conclude that the size of the ball bearing and also the mass does not effect where it reaches its terminal velocity. As you already know, if two objects of the same size but with different masses are dropped from the same height they will descend and hit the ground at the same time. It is only air resistance that will affect the descent if the objects size is slightly different. I can relate this to my experiments in finding the terminal velocity of the ball bearings through the liquid, and therefore explain why the occurance happened with only a slight varience with the very large ball bearings.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Bouncing Ball Experiment

    Therefore of the GPE that the ball possessed at the beginning some energy is given off as thermal energy. This means that not all the GPE is converted into KE as it would have been if the ball had been dropped in a vacuum.

  2. An Investigation into the terminal velocity of steel ball bearings in Glycerol.

    With several results, it also allows averages to be calculated that reduce the extent of any anomalies and therefore increase the accuracy of any the conclusions made from these results. Distance (m) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 t1 (s) 3.46 3.60 3.72 4.20 t2 (s) 3.25 3.96 3.38 4.56 t3 (s)

  1. Viscosity - Comparing the viscosities of different liquids.

    3 Cylinders 7. Magnet 8. Ball bearings 9. Honey 10. Washing liquid 11. Oil 12. Flat pieces of wood 13. Container 14. Table 15. Tape 16. 3 Timers (Stop Watch) Below is a diagram of the experiment I am going to carry out. 1. I will set up the apparatus as shown in the diagram above.

  2. The effect of the temperature on the viscosity of the syrup.

    changing the volume will change the density of the syrup, which is involved in Stoke's law equation. Position of descend - According to the 'laminar flow' theory, which I have stated previously, the position of descent should also be the same in each case.

  1. Practical Investigation Into Viscosity

    69.3 cP Air @ 18�C 0.018 2 cP Olive oil @ 20�C 84.0 cP Argon @ 20�C 0.022 17 cP Light machine oil @ 20�C 102 cP Air @ 229�C 0.026 38 cP Heavy machine oil @ 20�C 233 cP Neon @ 20�C 0.031 11 cP Caster oil @ 20�C

  2. Squash Ball and Temperature Investigation

    of the ball causes the ball to deform more as it hits the grounds making the ball lose more heat and sound energy. This means it has less energy to use during motion, resulting in lower bounces than heated balls.

  1. The Area of a Parachute Compared To Its Rate of Descent

    Speed Proportional parachute (m) vertically (m) fallen (m) (m/s/s) Speed (m/s�) 0.4 2.86 2.86 1.5 1.91 1.91 0.4 2.86 2.86 1.6 1.79 1.79 0.4 2.86 3.04 1.97 1.54 1.64 Mean speed 1.75 1.78 Diameter of Distance fallen Total distance Time (s) Speed Proportional parachute (m) vertically (m) fallen (m) (m/s/s)

  2. How does the temperature of a squash ball affects the impact time of the ...

    52 52.2 52.2 52.6 52.6 54 52.3 Impact time/0.001s 17 19 19 20 21 21 21 21 22 23 20.4 5. Temperature = 60.0+0.4oC Uncertainty of height=0.1cm Uncertainty of time=0.001s Mean height = (51.6+51.8x2+52x2+52.2x2+52.6x2+54)/10 = 52.3+0.4cm Uncertainty = Mean impact time = average time = (20.4+0.9) 10-3s Uncertainty = 6.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work