• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
14. 14
14
15. 15
15
16. 16
16
17. 17
17
18. 18
18
19. 19
19

# Quantitative electrolysis concerns the amount of product obtained in an electrolysis, and the various calculations to find the mass of a product using the different variables.

Extracts from this document...

Introduction

PLANNING: Factors that effect electrolysis: Quantitative electrolysis: Quantitative electrolysis concerns the amount of product obtained in an electrolysis, and the various calculations to find the mass of a product using the different variables. Factors that affect the mass of product gained during electrolysis. 1. Current intensity 2. The time during which the current was passed through 3. Concentration of the solution 4. Potential difference (V) 5. Temperature of solution 6. Depth of immersion 7. Size of electrodes 8. Distance between the electrodes. Investigation During the course of my experiment I shall be investigating current. This means that all the other variables must be kept constant to ensure that the test is fair. So different currents will be passed: a) For the same amount of time. b) With the same Copper (II) Sulphate solution. c) With the same voltage throughout. d) The depth of immersion will be kept constant e) The distance between the electrodes and f) The volume of the CuSO4 shall be kept constant. g) So will the size of the electrodes. h) In theory the temperature should also be kept constant, but this is not possible because the solution will be heated up as the current is passed through; so it shall be monitored instead. Background information What is electrolysis? "It is a chemical decomposition produced by passing a current through a conducting liquid" Oxford Concise English, Tenth Edition. During electrolysis, Therefore if a current, which is the number of electrons flowing in a given time is increased, the number of ions discharged must also increase. Therefore doubling the number of electrons flowing in a given time, will double the number of ions discharged and so the number of ions discharged will be directly proportional to the current. The same applies for time. When ions discharge, products are obtained. Increasing the number of ions discharged will increase the mass of product formed. ...read more.

Middle

(N.B. It is important to keep looking at the ammeter during the course of the test because the ampage changes on its own.) Then once the weights of the electrodes have been recorded the test shall be done twice for each of the following ampages: - 0.7A - 1.0A - 1.3A - 1.6A - 1.9A I have chosen these values because I think they will give me good results for the following reasons: 1. I have already conducted this experiment and when the current is below 2.0A, it causes less heat. 2. Obviously if the current is 0.0A I shall not get a reading at all, so I have spaced out the different currents between 0.4 and 2.0A. 3. I have chosen to take six readings testing each one twice to get a good average and a good spread of results. 4. The time was spread over five minutes because as I have already carried out this experiment. I found that if the current was not passed through for long enough, the change in mass at the electrodes was barely noticeable. Diagram NB: It doesn't matter which way around the circuit is set up providing all the components are installed. It is important though to keep track of which electrode is the anode and which is the cathode. Safety Precautions ` As a safety precaution, the acitone was placed in a fume cupboard as it is highly flammable. Rubber gloves were available to any who wished to use them. Coats were hung up on the coat hangers and stool were placed under benches. The bags were left at the front of the classroom. Hypothesis and Predictions My hypothesises are: 1. Mass ? Current x Time 2. Mass lost at the anode = mass gained at the cathode 3. The higher the current, the higher the temperature rise. OBTAINING EVIDENCE: During the experiment Current intensity: Independent Variable How long the current was passed for: 5.0 minutes... ...read more.

Conclusion

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Changing Materials - The Earth and its Atmosphere essays

1. ## How are products from oil obtained and used?

4 star(s)

Some fractions such as the residue from the distillation tower need to be transformed into new components. Low-value fractions that aren't in great demand can be converted to petrol and other useful chemicals. The most used conversion method is called cracking because it uses heat and pressure to crack large hydrocarbon molecules into smaller ones.

2. ## To find out how current affects the rate of electrolysis

3 star(s)

These will migrate to the positive anode. The hydroxide would lose it's oxygen. The evidence to this is that during the pre-test you could see fizzing and bubbles coming off the anode. In this case the hydroxide ion is discharged by loosing its electron to form water and oxygen, 4OH- - 4e- = 2O + 2H2O.

1. ## Thermal Decomposition Of Metal Carbonates

I have put the fastest first at the top of the list. 1. Copper Carbonate 2. Zinc Carbonate 3. Sodium Carbonate 4. Potassium Carbonate I have not predicted where Manganese Carbonate will thermally decompose as I do not know where it is in the reactivity series.

2. ## The Electrolysis Of Copper Sulphate Solution Using Copper Electrodes

The PSU was switched off, the electrodes were weighed with the 3-figure balance and the respective mass was recoreded. The PSU was switched on for a minute. The electrodes were removed from the beaker, washed under the tap, dried with the lab coat, washed with acetone in order to remove all the water.

1. ## Importance of electrolysis in our daily lives

They do this by sending current through water, which leads to hydrogen forming at the cathode and oxygen forming at the anode. The beauty of this is that electrolysis can be performed wherever there is an energy source. That means that scientists and industries can use renewable energy sources like solar power and wind power to produce hydrogen.

2. ## An experiment to show how electroplating using copper electrodes.

was not too high, and the current should be controlled and kept at constant level of decrease or increase. Electric equipment should be handled with dry hands so that electrocution does not occur. It is essential to set up the circuit properly, especially to set up the ammeter; we have

1. ## Investigation to show how the amount of electric current affects the amount of copper ...

I predicted that, as the current increases, the amount of copper deposited at the cathode will also increase. My results not only prove my prediction, but they also prove Faraday's first law of electrolysis which states that that the mass of a given element liberated during electrolysis is directly proportional to the quantity of electrical current consumed during electrolysis.

2. ## The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

At 0.1A three experiments were carried out after two, six and ten minutes. Time (min) 2 5 10 Temperature increase (0C) 0.5 1 1.75 Mass increase (g) 0.00 0.01 0.02 At all the time periods at this amperage the temperature rise wasn't large so they were all suitable in that criteria.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to