• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7

# relationship between voltage and current

Extracts from this document...

Introduction

Physics Coursework

Aim:

• To find out the relationship between voltage and current in a circuit across a filament lamp.
• To investigate the connection between temperature and alternating voltage also resistance and temperature.
• To find out whether a filament bulb acts as a black body.

### Ohm’s Law

The relationship between current, voltage, and resistance is given by Ohm’s law. This law states that the amount of current passing through a conductor is directly proportional to the voltage across the conductor and inversely proportional to the resistance of the conductor at a given constant temperature. Ohm’s law can be expressed as an equation, V = IR, where V is the difference in volts between two locations (called the potential difference), I is the amount of current in amperes that is flowing between these two points, and R is the resistance in ohms of the conductor between the two locations of interest. V = IR can also be written R = V/I and I = V/R. If any two of the quantities are known, the third can be calculated. For example, if a potential difference of 110 volts sends a 10-amp current through a conductor, then the resistance of the conductor is R = V/I = 110/10 = 11 ohms. If V = 110 and R = 11, then I = V/R = 110/11 = 10 amp.

The unit of resistance is the ohm, which is equal to one volt per ampere, or one volt second per coulomb.

Under normal conditions, resistance is constant in conductors made of metal. If the voltage is raised to 220 in the example above, then R is still 11. The current I

Middle

P = Power radiated  in W (J/s)
= Stefan's Constant 5.67 x 10-8 W m-2 K-4
A = Surface area of body (m²)
T = Temperature of body (K)

That is, the power per unit area is directly proportional to the fourth power of the thermodynamic temperature.

The value of the Stefan-Boltzmann constant is approximately 5.67 x 10-8 watt per meter squared per Kelvin to the fourth (W · m-2 · K-4).

Prediction

I predict that since the temperature of the filament lamp will prove to be some what difficult to keep constant, the resistance of the filament lamp will increase as temperature increases, therefore I will not be able to prove ohms law. Also as the voltage is increased I believe the current is increased although I do not think they are proportional to one another. Additionally I believe that the filament lamp works as a black body.

Circuit

Safety

To ensure that all students come to no harm and injuries, the basic safety procedures should be considered, such as tucking in all chairs, not in eating or drinking in class and being careful when handling equipment. The need for dry hand is somewhat important to reduce the risk of electrocution but should not touch circuit when DC supply is on, because after all we have ions in us which conducts electricity, although most material we will use is protected by plastic covering. Additionally the filament lamp will get extremely hot, and could cause burns. Large current as well as burning can also spoil sensitive equipment.

Conclusion

I could not really get vast amounts of data, because of the limited voltage that the power supply went to (14V) and also due to the limited time we had which kind of pressurised me which may have caused some errors but I accept full responsibility.

Improvements I would make to the experiment:

• I would use a power supply that would exceed 14 Volts.
• I would either have a couple of filament lamps so, after every experiment I could change it so it cools down and stays at the constant of room temperature, this would mean may get even closer to the straight line graph that we expect, and prove ohms law, or could use a optical thermometer to accurately have each filament lamp at a certain temp, although we are talking about an expensive equipment and highly advanced for us.
• I could either use an exceptional voltmeter and ammeter to reduce fluctuations or an ohmic meter to see resistance and see the contrast in results we get, which would really determine if my formula is as accurate as it seems to be.
• I could use the equation V=IR for non-ohmic devices, but it then ceases to represent Ohm's Law. In non-ohmic cases, R depends on V and is no longer a constant of proportionality but a variable called differential resistance. To check whether a given device is ohmic or not, one plots V versus I and checks that the curve is a straight line

My success was quiet high due the fact that my percentage error in the end was only 2.39% which was determined using my power law.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Electricity and Magnetism essays

1. ## How does the power dissipated by a light bulb vary with voltage?

5 star(s)

current is the amount of electric charge flowing through a point in a circuit in a given amount of time). So if both voltage and current increase, then according to the equation power = voltage x current, power should increase at an increasing rate.

2. ## The Efficiency of an Electric Motor.

1.6 26.7 0.248543689 0.374531835 6.636116505 10 50.69054307 2.56 1.4 33.4 0.190291262 0.299401198 6.355728155 10 57.33838446 1.96 1.2 46.7 0.139805825 0.214132762 6.528932039 10 53.16440638 1.44 1 69.5 0.097087379 0.143884892 6.747572816 10 48.20143885 1 0.8 112.68 0.062135922 0.088746894 7.001475728 10 42.8270323 0.64 0.5 360.76 0.024271845 0.027719259 8.75631068 10 14.20334849 0.25 0.4 593.72

1. ## How does current vary with voltage in a light bulb?

A thermistor a none Ohmic conductor because has a high resistance when cold but low resistance when hot. A light dependent resistor is a non Ohmic conductor because has a high resistance in the dark but a low resistance in the light.

2. ## Choosing a light source

Lesson 5 In this lesson I will be trailing the experiment I will being for task 4. at the end of the trailing, I will choose a method for the real experiment. Lesson 6 In this lesson, I will start my task 4 and do the real experiment.

1. ## Wind Power.

speed is higher, however, you must find the perfect medium--there are often more variables as you increase in altitude. In calculating how high a windmill should be the following equation is used: V1/V2 = (H1/H2)n, Where V1 is the wind speed at the highest point of the highest blade, V2

2. ## Ohms Law.

Preliminary Method In this preliminary experiment, I will use different lengths of wires to measure their resistance. The main idea of doing the preliminary experiment was to find a suitable current number to put the power supply on. I also wanted to do this experiment to familiarise myself further with

1. ## Investigation to see the relationship between actual and theoretical energy released when burning different ...

The fist of the isomers of each alcohol will have the highest melting and boiling points, as it is longer as the O-H bond is on the end. I think that as Propan-2-ol needs less energy to break the bonds as it is more compact, it will give off more

2. ## Molecular stability (rheology) of a plastic carrier bag through stress - strain tests.

Therefore each longer, larger radical can react with its other radicals to produce a polymer that extends further. 1.4.3 Termination This chain reaction must eventually end. The instability of the radicals means that eventually they will collide and form a pair without making a new radical.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to