• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Resistance of a wire

Extracts from this document...

Introduction

INTRODUCTION –

An electrical circuit was mounted using a power supply, an ammeter, a voltmeter and a resistor (wire). The voltage and current were worked out for different lengths of the wire using the ammeter (for the current) and the voltmeter (for the voltage). Using the voltage and current recordings, the resistances were calculated for each of the lengths.

AIM –

To investigate the correlation between the length and the resistance of a wire.

DIAGRAM –

image03.jpg

PICTURE –

image04.png

HYPOTHESIS –

I predict that the longer the wire, the greater the resistance. This is because the electrons have to move in a longer distance, making the opposition (resistance) of conductor to the current greater.

RESULTS –

...read more.

Middle

0,531092437

50

6,28

14,2

0,442253521

40

6,12

17,3

0,353757225

30

6,09

22,4

0,271875

20

5,9

32,9

0,179331307

TRIAL 3

Length (cm)

Voltage (V)

Current (A)

Resistance (Ω)

100

6,53

7,4

0,882432432

90

6,5

8,2

0,792682927

80

6,63

8,9

0,74494382

70

6,29

10

0,629

60

6,4

12

0,533333333

50

6,27

14,2

0,441549296

40

6,15

17,3

0,355491329

30

6,03

22,3

0,270403587

20

5,99

32,5

0,184307692

To work out the resistances of the different sized wires, we used the Ohm’s Law. The law states that:

Voltage (V) = Current (A) x Resistance (Ω)

SO…

Resistance (Ω)= Voltage (V)image00.png

                                                      Current (A)

So, we first recorded the voltage and current for different

...read more.

Conclusion

EVALUATION –

Although the results came as initially expected, the experiment could have been improved in some ways. Firstly, the wire could have been stretched more (in the limit), to give the more precise lengths. As the wire wasn’t fully stretched, the length readings could have been wrong, affecting the current and voltage. To prevent the wire from overheating, we should have decreased the power from the power supply, as temperature increase can also affect the results. I think that the number of trials was the ideal and repeating it one more time wouldn’t be much useful (although they would be slightly more accurate).

Apart from that, I can say that the experiment went well and was a fair test. The results lead to a conclusion very similar to the hypothesis, which shows us that everything went as expected.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a star student thought of this essay

4 star(s)

Response to the question

The writer had approached the question well, overall having a well written report. It was nice that the writer decided to give a brief introduction. However, it then was annoying when not only that there wasn't a list of apparatus ...

Read full review

Response to the question

The writer had approached the question well, overall having a well written report. It was nice that the writer decided to give a brief introduction. However, it then was annoying when not only that there wasn't a list of apparatus but the diagram didn't clearly show where the wire and ruler where going to be placed.It was good that the writer was able to give a hypothesis before the actual experiment, which shows that the writer knew the knowledge behind the experiment that they were doing and why certain correlations would have occurred. When they mentioned Ohm's law, they should have mentioned the conditions that are needed in order for a material to obey Ohm's law. The writer has a clear and easy graph to follow showing the relation between length of a wire and resistivity, also clearly labelling units of measurements. It was also good that the writer explained the effects of temperature on the wire. The evaluation was written well and explained all the draw backs within the experiment.

Level of analysis

The writer's scientific language was of a high standard. Before starting any experimentation, the writer has explained their thoughts on the experiment which shows that the writer was aware of the science involved within experimentation. When it comes to writing decimal numbers, the writer should have written full stops instead of commas. The writer has got the write concepts in terms of calculations, but they have to make sure that the formulae that they use are correct fully.

Quality of writing

The spelling and grammar are of a high standard. However, the writer should double check over their work to make sure that it all makes sense when it's being read. For example "the greater the length of wire lead to a greater resistance" doesn't make sense when read. The use of technical terms are used correctly. However, if they are recording data, they should make sure that all data is kept on the same page if they can. It makes it easier for a reader to follow.


Did you find this review helpful? Join our team of reviewers and help other students learn

Reviewed by cpdavis 29/02/2012

Read less
Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Ohm's Law coursework

    4 star(s)

    The second crocodile clip is clipped to the relevant position depending on the required length of wire. 4. The power supply is turned on. The voltage and current are then read off the ammeter and voltmeter, and recorded. 5.

  2. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    2.8 Below is my observation table that compares the value of R from my tabular calculations and the value of R from my graphical results: Area [m ] Calculated value of R [] Graphical value of R [] 0.12 2.62 3.33 0.25 2.86 2.8 MATHEMATICAL DEDUCTIONS TO FURTHER PROVE MY

  1. Free essay

    Resistance in a wire

    This graph shows the resistance in a 34 SWG Constantine wire. It shows measurements from 10cm up to 100cm. The resistance in the wire increases as the length of wire increases. My results do show that my hypothesis was correct.

  2. Length vs Resistance

    Thickness of wire: 0.25mm (Power pack set to 2V) Length Voltage Current Resistance (?) 10 1.88 1.53 1.23 20 2.22 0.93 2.41 30 2.37 0.66 3.59 40 2.45 0.50 4.90 50 2.51 0.41 6.12 60 2.55 0.34 7.50 Thickness of wire: 0.31mm (Power pack set to 2V)

  1. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    For each graph I have added a curved line of best fit, this shows the general sequence of the weight that an electromagnet can hold. It also helps if I wanted to find out how much an electromagnet would hold with 35 turns for example, I would simply be able

  2. Discover the factors affecting resistance in a conductor.

    the volts and amps average for each length to find the resistance. Using the equipment safely The equipment I used (as mentioned in the apparatus section), was used safely and allowed me to perform the experiment with a great deal of accuracy, but also safely.

  1. To find out what happens to the efficiency of a motor as I change ...

    as the load lifts, and by the time the weight has been lifted to it's full height, all the movement energy will have been converted into gravitational potential energy, as the load can now fall. Because calculating efficiency requires that we know the useful energy output, we shall need a

  2. Resistance of a Wire Investigation

    This variable can be fixed by adding a fixed amount of sodium hydrogen carbonate to the beaker and plant. The experiment should also be completed in one session and under two hours so the plant does not use up a significant percentage of the CO2.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work