• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Resistance of a wire

Extracts from this document...

Introduction

INTRODUCTION –

An electrical circuit was mounted using a power supply, an ammeter, a voltmeter and a resistor (wire). The voltage and current were worked out for different lengths of the wire using the ammeter (for the current) and the voltmeter (for the voltage). Using the voltage and current recordings, the resistances were calculated for each of the lengths.

AIM –

To investigate the correlation between the length and the resistance of a wire.

DIAGRAM –

image03.jpg

PICTURE –

image04.png

HYPOTHESIS –

I predict that the longer the wire, the greater the resistance. This is because the electrons have to move in a longer distance, making the opposition (resistance) of conductor to the current greater.

RESULTS –

...read more.

Middle

0,531092437

50

6,28

14,2

0,442253521

40

6,12

17,3

0,353757225

30

6,09

22,4

0,271875

20

5,9

32,9

0,179331307

TRIAL 3

Length (cm)

Voltage (V)

Current (A)

Resistance (Ω)

100

6,53

7,4

0,882432432

90

6,5

8,2

0,792682927

80

6,63

8,9

0,74494382

70

6,29

10

0,629

60

6,4

12

0,533333333

50

6,27

14,2

0,441549296

40

6,15

17,3

0,355491329

30

6,03

22,3

0,270403587

20

5,99

32,5

0,184307692

To work out the resistances of the different sized wires, we used the Ohm’s Law. The law states that:

Voltage (V) = Current (A) x Resistance (Ω)

SO…

Resistance (Ω)= Voltage (V)image00.png

                                                      Current (A)

So, we first recorded the voltage and current for different

...read more.

Conclusion

EVALUATION –

Although the results came as initially expected, the experiment could have been improved in some ways. Firstly, the wire could have been stretched more (in the limit), to give the more precise lengths. As the wire wasn’t fully stretched, the length readings could have been wrong, affecting the current and voltage. To prevent the wire from overheating, we should have decreased the power from the power supply, as temperature increase can also affect the results. I think that the number of trials was the ideal and repeating it one more time wouldn’t be much useful (although they would be slightly more accurate).

Apart from that, I can say that the experiment went well and was a fair test. The results lead to a conclusion very similar to the hypothesis, which shows us that everything went as expected.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a star student thought of this essay

4 star(s)

Response to the question

The writer had approached the question well, overall having a well written report. It was nice that the writer decided to give a brief introduction. However, it then was annoying when not only that there wasn't a list of apparatus ...

Read full review

Response to the question

The writer had approached the question well, overall having a well written report. It was nice that the writer decided to give a brief introduction. However, it then was annoying when not only that there wasn't a list of apparatus but the diagram didn't clearly show where the wire and ruler where going to be placed.It was good that the writer was able to give a hypothesis before the actual experiment, which shows that the writer knew the knowledge behind the experiment that they were doing and why certain correlations would have occurred. When they mentioned Ohm's law, they should have mentioned the conditions that are needed in order for a material to obey Ohm's law. The writer has a clear and easy graph to follow showing the relation between length of a wire and resistivity, also clearly labelling units of measurements. It was also good that the writer explained the effects of temperature on the wire. The evaluation was written well and explained all the draw backs within the experiment.

Level of analysis

The writer's scientific language was of a high standard. Before starting any experimentation, the writer has explained their thoughts on the experiment which shows that the writer was aware of the science involved within experimentation. When it comes to writing decimal numbers, the writer should have written full stops instead of commas. The writer has got the write concepts in terms of calculations, but they have to make sure that the formulae that they use are correct fully.

Quality of writing

The spelling and grammar are of a high standard. However, the writer should double check over their work to make sure that it all makes sense when it's being read. For example "the greater the length of wire lead to a greater resistance" doesn't make sense when read. The use of technical terms are used correctly. However, if they are recording data, they should make sure that all data is kept on the same page if they can. It makes it easier for a reader to follow.


Did you find this review helpful? Join our team of reviewers and help other students learn

Reviewed by cpdavis 29/02/2012

Read less
Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Peer reviewed

    Investigation in resistance in wires

    5 star(s)

    One would be to start with the longest length of wire and get smaller, rather than start at the smallest and get larger. Starting with the smallest could have been one of the issues I had in regards to the wire still being hot when I started testing the next length.

  2. Free essay

    Resistance in a wire

    These results support the theory that resistance increases as the length of wire increases. I repeated the test twice to confirm that the results were reliable and the exclusion of any anomalous results the combination of these results ensures they are dependable.

  1. Resistance of a Wire Investigation

    Because of this, the coloured light experiment should not be taken as seriously as light intensity or carbon dioxide. TWELFTH In this coursework, I intend to explain the variation (if any) that light intensity makes to the rate of photosynthesis in a green plant.

  2. Physics GCSE Coursework:Factors affecting the resistance of a wire

    make it heat up and give an incorrect reading for the resistance. 2. Connect the circuit to the ends of the wire (50cm long) and take down the recordings of both the voltage and current. Turn off the current between each reading to allow time for the wire to cool.

  1. Discover the factors affecting resistance in a conductor.

    the volts and amps average for each length to find the resistance. Using the equipment safely The equipment I used (as mentioned in the apparatus section), was used safely and allowed me to perform the experiment with a great deal of accuracy, but also safely.

  2. The resistance of wire.

    the more likely the electrons are going to collide with the atoms. Therefore, if the length is doubled the resistance should also double. This is because if the length is doubled the number of atoms will also double resulting in twice the number of collisions slowing the electrons down and increasing the resistance.

  1. To find out what happens to the efficiency of a motor as I change ...

    way of calculating the change in GPE of the load once it has been lifted (how far the weight has moved). To calculate the change in gravitational potential energy we use the following formula: CHANGE IN GRAVITATIONAL = WEIGHT (N) ? CHANGE IN VERTICAL HEIGHT (m) POTENTIAL ENERGY (J) ...

  2. Factors Affecting the Efficiency of a Wind Turbine

    The current generated changes direction each time when this happens. The peak represents the maximum current generated in one complete turn. So each peak corresponds to one complete turn. Increasing or decreasing the windspeed altered frequency. Moving the hair dryer forward and backwards over a known distance did this.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work