• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Rutherford’s Alpha-Particle Scattering Experiment

Extracts from this document...

Introduction

Rutherford's Alpha-Particle Scattering Experiment Early Views of the Atom i. Around 400 BC a Greek scientist called Democritus said that matter was made up of small particles he named 'Atoma' (meaning indivisible). ii. In 1804 John Dalton stated that matter consisted of tiny solid balls he called 'Atoms'. Backdrop of Rutherford's Experiment At the turn of the century, there was little known about atoms except that they contained electrons. J. J. Thompson discovered the electron in 1897, and there was considerable speculation about where these negatively charged particles existed in nature. Matter is electrically neutral; some positive charge must balance the charge of the electron. These was what the scientist thought at that time. One popular theory of the time was called the 'plum-pudding model'. This model, invented by Thompson, envisioned matter made of atoms that were spheres of positive charge spiked with electrons throughout. ...read more.

Middle

The vast majority of the alpha particles are deflected very little as they travel through the foil; 2. A tiny minority are deflected through large angles or rebounded. Conclusions Through these results, they drew some imagination: 1. The nucleus is so small that the odds are overwhelmingly in favor of a given alpha particle motoring right on through the gold foil as if nothing were there. It turns out that the atom is a very empty place. 2. Some alphas, by pure random chance, will pass near some gold atom nuclei during their passage through the foil and will be slightly deflected. By pure chance, some or all of the small deflections will add up and shove the alpha particle off a straight-line path. Those alphas will emerge slightly deviated (say one or two degrees) from a straight-line path. 3. A very, very few alphas, by pure, random chance, will hit a nucleus almost head-on. ...read more.

Conclusion

The diameter of a gold atom is about 0.3�10-9m (=0.3nm). The nucleons are made up of quarks, and have a radius of about 0.8 fm (0.8 ? 10-15) in diameter. If an atom were the size of a football stadium, with the electrons out around the upper deck, the nucleus down at midfield would be smaller than the coin flipped at the start of the game. If the nucleus were represented in a model by a pea (which had a length of 5-7mm): Let the diameter of a pea is 6mm. The diameter of the atomic model is 6 � 105 mm = 600 m The volume of the atomic model is 3003 � 3/4 � ? � 400m � 400m � 400m Therefore, the atomic model should be a sphere which has a radius of 300m, or a cube which has each side of 400m. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Radioactivity essays

  1. Peer reviewed

    Rutherford's Alpha Particle Scattering Experiment:The discovery of the Nucleus...

    4 star(s)

    The electric field from a sphere of charge reaches its maximum on the surface. Therefore, for a given charge, assumed spherically distributed, the only way to get a stronger field is to compress it into a smaller sphere. Rutherford concluded that he could only explain the large alpha deflections if

  2. Brief History of the atom model.

    Atoms of different elements combine in simple whole number ratios to form compounds. 4. A chemical reaction occurs when atoms are combined, separated, or rearranged. In statements 1 and 4, Dalton accounts for the conservation of mass. By relating atoms to the measurable property of mass, Dalton makes Democritus's idea of the atom into a scientific theory.

  1. The advantages and disadvantages of nuclear power and fossil fuels and which is the ...

    For medical purposes, other units of measurement reflecting this aspect are more appropriate. Most substances reach safe radiation levels after around 10 to 20 half lives. The "half life" of a substance is the time take for half of the nuclei in a sample to decay to a stable form.

  2. Atomic Theory of Matter.

    These are called the transuranium elements because they are all made of atoms that have more mass than the uranium atom. All transuranium elements, therefore, have atomic numbers greater than 92. Transuranium elements through atomic number 107 have been synthesized, though many of them live only a fraction of a second.

  1. Physics - 21st Century Mobilephones

    Electromagnetic radiation ranges from the energetic x-rays to the less energetic radio frequency waves used in broadcasting. Microwaves fall into the radio frequency band of electromagnetic radiation. Microwaves should not be confused with x-rays, which are more powerful. Microwaves have three characteristics that allow them to be used in cooking:

  2. Effects of the Atomic Bombs on Hiroshima and Nagasaki

    This type of stomic bomb was used on Nagasaki, and given the nickname "Fat Man" after Winston Churchill (Outlaw Labs). The blast from an atomic bomb's explosion will last for only one-half to one second, but in this amount of time a great deal of damage is done (Physicians and Scientists on Nuclear War, 1981).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work