See what will happen if I change a variable whilst I swing a pendulum and see the effect which it has on the pendulums time to complete one whole swing (from where it starts, to the opposite end, and back again).

Authors Avatar

Physics

PENDULUM INVESTIGATION


Aim of the investigation

The aim of the pendulum investigation is to see what will happen if I change a variable whilst I swing a pendulum and see the effect which it has on the pendulums time to complete one whole swing (from where it starts, to the opposite end, and back again). This will give me an  insight into what will effect the time of the swinging of the pendulum, be it weight, string length, the angle, or the swinging point.

Planning my investigation

I will set up my investigation by having a 30cm length of string. This will be cut six times as I am measuring six different lengths of string. These will include lengths of: 30, 25, 20, 15, 10 and 5 centimeters. To make my results reliable I will test them three times each, at all the lengths, and average them out, to give a more accurate measurement. I think that I can produce reliable, precise results, using this information and plan. I will have enough data to spot “misfit” results too.

Safety Issues

For safety, I will use a pair of safety goggles. This is because whilst the pendulum is swinging, it may hit me in my eyes, as the pendulum is at a similar level of height to my head.

I will also clear all the chairs, coats and bags from the vicinity as they may cause obstruction to me, other people who I work with, or people passing who may be injured.

After taking these measures into account, I was able to proceed to the next stage of the gathering of results.

Fair testing

I will make my testing as fair as I can by firstly, making sure that the windows are closed so there are no elements affecting my pendulum, before I begin the investigation. Secondly, I will then measure the piece of 30cm string and the weight of the pendulum to double check on my first readings. Thirdly, I will use a protractor to measure exactly 90º of where to swing the pendulum from. And finally, I will measure ten swings and the time it takes to complete them. This is because it is easier to count the length of ten swings than it is to count the length of one swing. I will then divide my answer by ten to show the result for the length of one swing.

Join now!

My prediction of the test results

I believe that the events which will occur are that the longer the piece of string which holds the weight, the longer the time it takes the pendulum to complete one whole swing. So the shorter the string length, the faster the time for the pendulum to fully complete a full swing, as it has less distance to attain.

For my investigation I will use:

  • One piece or 30cm string – to be used as the length of the pendulum
  • One 17g piece of plaster-scene - as a weight, to ...

This is a preview of the whole essay