• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Sir Isaac Newton

Extracts from this document...

Introduction

SIR ISAAC NEWTON

Sir Isaac Newton is an English mathematician and physicist, considered one of the greatest scientists in history, who made important contributions to many fields of science. His discoveries and theories laid the foundation for much of the progress in science since his time. Newton was one of the inventors of the branch of mathematics called calculus (the other was German mathematician Gottfried Wilhelm Leibniz). He also solved the mysteries of light and optics, formulated the three laws of motion, and derived from them the law of universal gravitation.

Newton ignored much of the established curriculum of the university to pursue his own interests: mathematics and natural philosophy. Proceeding entirely on his own, he investigated the latest developments in mathematics and the new natural philosophy that treated nature as a complicated machine. Almost immediately, he made fundamental discoveries that were influential in his career in science.

Newton's Three Laws of Motion

Newton's first law of motion states that if the vector sum of the forces acting on an object is zero, then the object will remain at rest or remain moving at constant velocity.

...read more.

Middle

Friction acts like a force applied in the direction opposite to an object's velocity. For dry sliding friction, where no lubrication is present, the friction force is almost independent of velocity. Also, the friction force does not depend on the apparent area of contact between an object and the surface upon which it slides. The actual contact area—that is, the area where the microscopic bumps on the object and sliding surface are actually touching each other—is relatively small. As the object moves across the sliding surface, the tiny bumps on the object and sliding surface collide, and force is required to move the bumps past each other. The actual contact area depends on the perpendicular force between the object and sliding surface. Frequently this force is just the weight of the sliding object. If the object is pushed at an angle to the horizontal, however, the downward vertical component of the force will, in effect, add to the weight of the object. The friction force is proportional to the total perpendicular force.

Where friction is present, Newton's second law is expanded to

image00.png

...read more.

Conclusion

Another conserved quantity of great importance is angular (rotational) momentum. The angular momentum of a rotating object depends on its speed of rotation, its mass, and the distance of the mass from the axis. When a skater standing on a friction-free point spins faster and faster, angular momentum is conserved despite the increasing speed. At the start of the spin, the skater's arms are outstretched. Part of the mass is therefore at a large radius. As the skater's arms are lowered, thus decreasing their distance from the axis of rotation, the rotational speed must increase in order to maintain constant angular momentum.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigation into Friction.

    inaccurate, compared to the results that might have been obtained if the experiment had been done with a piece of technical or electronic equipment. For this reason, the results as a whole are inaccurate compared to what they might have been if they had been taken more accurately.

  2. Physics Lab - Conservation of momentum

    But the principle of conservation of momentum states that the final and initial momentum shall stay constant, provided no external forces act upon the bodies. In this experiment it was impossible to carry it out without any external forces as it was restricted to being performed within a classroom.

  1. Additional Science

    The stopwatch starts when the ball is dropped, from 180 degrees. Then the time is recorded. 4. This is repeated seven times for accuracy, and then the next two balls carry out steps 2, 3 and 4 again. 5.

  2. Investigate how the weight of an object affects the force required to overcome friction.

    STATIC AVERAGE FRICTION (N) RESULTS FOR STATIC FRICTION (N) DYNAMIC AVERAGE FRICTION (N) RESULTS FOR DYNAMIC FRICTION (N) 1.568 1.3 / 1.3 / 1.4 1.33 1 / 1 / 1 1 2.548 2.1 / 2.1 / 2.1 2.1 1.6 / 1.6 / 1.6 1.6 3.528 2.75 / 2.75 / 2.6 2.7 2.25 / 2.4

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work