• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18

The aim of my investigation was to determine how limiting factors would affect the rate of photosynthesis in a plant.

Extracts from this document...

Introduction

Photosynthesis Aim: The aim of my investigation was to determine how limiting factors would affect the rate of photosynthesis in a plant. It all begins at the bottom of the food chain with green plants being the producers. All the food in the world is made by plants; they use energy in sunlight to make food. This process is called photosynthesis. Plants need two chemicals to make this food- one is water which they get from the soil. The other is carbon dioxide which thy get from the air. They also need sunlight energy which is used to make the water and carbon dioxide react together. Water and carbon dioxide are ignorant substances (not made by living things). They usually have molecules. These three things are sometimes called raw materials. The reaction between the two chemicals (using sunlight) produces two new substances- glucose and water. Glucose is an organic substance (made by all living things) which usually have large molecules. The energy you get from glucose was once sunlight energy and somewhere in the world a plant converted it into chemical energy which your body can now use. Plants are living food factories. The production of glucose and oxygen can be written as a word equation; SUNLIGHT WATER + CARBON DIOXIDE --> GLUCOSE + OXYGEN ENERGY The balanced molecular equation for this is; SUNLIGHT 6H2O (1) + 6CO2 (G) --> C6H12O6 (AQ) + 6O2 (G) ENERGY All plants are green, the green color is chlorophyll. It is a very important substance, without it photosynthesis couldn't happen. Chlorophyll is a complex molecule which is imbedded in the thylakoids membrane which absorbs light. The thylakoids membrane is found in the chloroplasts. These molecules are the most important pigments for absorbing the light energy used in photosynthesis. A chlorophyll molecule has a hydrophobic 'tail' that embeds the molecule into the thylakoid membrane. The hydrophobic tail is made up of carbon, hydrogen and oxygen based molecules. ...read more.

Middle

Plants decrease the amount of water that evaporates by keeping their stomates closed during hot, dry weather. Unfortunately, this means that once the CO2 in their leaves reaches a low level, they must stop doing photosynthesis. Even if there is a small portion of CO2 left, the enzymes used to transfer it into the Calvin cycle don't have enough CO2 to use. Grass in our gardens just turns brown and goes dormant. Some plants like crabgrass, corn, and sugar cane have a special modification to conserve water. These plants capture CO2 in a different way: they do an extra step first, before doing the Calvin cycle. These plants have a special enzyme that can work better, even at very low CO2 levels, to capture CO2 and turn it first into oxaloacetate, which contains four carbons. Thus, these plants are called C4 plants. The CO2 is then released from the oxaloacetate and put into the Calvin cycle. This is why crabgrass can stay green and keep growing when all the rest of your grass is dried up and brown. There is another strategy to cope with very hot, dry, desert weather and conserve water. Some plants (for example, cacti and pineapple) that live in extremely hot, dry areas like deserts, can only safely open their stomata's at night when the weather is cool. Thus, there is no chance for them to get the CO2 needed for the dark reaction during the daytime. At night when they can open their stomata's and take in CO2, these plants incorporate the CO2 into various organic compounds to store it. In the daytime, when the light reaction is occurring and ATP is available (but the stomata's must remain closed), they take the CO2 from these organic compounds and put it into the Calvin cycle. These plants are called CAM plants, which stands for crassulacean acid metabolism after the plant family, Crassulaceae (which includes the garden plant Sedum) ...read more.

Conclusion

This would have had a very marginal effect on my results as a whole, but eliminate this problem completely, it would have been necessary to perform the experiment in a totally dark room. A further inaccuracy was in the heat generated by the lamp. As I have previously described, a temperature change could seriously alter and produce inaccurate results. Furthermore as shown in the results table the temperature varied from 19�c to 23�c. The amount of oxygen produced in each try could have been inaccurate. One way that I could reduce the production errors and keep the temperature constant would be to place a Perspex block between the lamp and the elodea which would absorb most of the heat, while allowing the light energy to pass through it. Even though carbon dioxide concentration could have been an error in the experiment it is unlikely that over a short period of time the concentration would have been so low as to become the limiting factor. However if I were to perform this experiment over a longer period time the amount of CO2 will have to be measured and add sodium hydrogen carbonate to the water to increase CO2 concentration where necessary. Finally the last inaccuracy was time keeping. If we began timing just after the first bubble had been produced and in another reading it was just before, it could have had a negative effect on the accuracy of my results. Therefore on each I started just after the first bubble had been produced which increased the accuracy. Overall, I think that due to the fact that we were experimenting with small volumes of oxygen, it wasn't that accurate however enough to support and justify my hypothesis. Improvements could have been made as I have stated, but due to consequential problems related to these adjustments it was not possible. To extend this investigation into the rate of photosynthesis, I could try to involve some of the other limiting factors to the same experiment. It could also be interesting to explore the effects of colored lights on the rate of photosynthesis. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    An investigation into the effect of light intensity on the rate of photosynthesis of ...

    5 star(s)

    There will be more error if too few bubbles are produced. But if the distance is less than 10cm, there will be too many bubbles produced in a minute, about one bubble per second. Though this will give me a more accurate result of the rate of the producing of

  2. Marked by a teacher

    An investigation into the effect of a germination inhibitor on the germination of seeds.

    3 star(s)

    Averages are needed for the 'Group Data' Chi-squared; 2 sets of chi-squared tests are being carried out 'individual data' (my own results) and 'group data' (the average results of the 6 people). An average has to be used so that the data is around the same as the Individual Data, therefore comparisons can be made.

  1. Examine the root, stem and leaf tissue layers of monocotyledonous and dicotyledonous plants.

    Some trees grow in very unstable soil so that they develop a complex prop root system that helps keep the tree stable in an unstable environment (Curtis et al 1989). For example, Epiphytes and vines also have special roots that help them grab onto a tree's bark and stay put (Curtis et al 1989).

  2. To see what factors affect the rate of photosynthesis. Introduction Photosynthesis is the process ...

    Photosynthesis is light dependent. At low light intensities, this may become the limiting factor - one reason why plants grow better outdoors, rather than in the house, and one reason why we recommend the use of light banks if you are trying to grow plants in schools.

  1. The effects of osmosis in plant tissues

    sugar solution (M) original mass of cucumber (g) mass after immersion in solution(g) change in mass (g) Percentage change in mass % Average (mean) of A and B % 0 A 1.44 1.57 0.13 9.03 9.32 B 1.56 1.71 0.15 9.62 0.2 A 1.28 1.27 -0.01 -0.78 0.40 B 1.27

  2. Free essay

    Transport in flowering plants- Dye Experiment 2. Aim: To find (a) the tissue ...

    Second, different leafy shoot has different number of vascular bundle and thus different number of xylem for transporting water. Therefore, the numbers of stain in different stem are different. Also, different vascular bundle has xylem with different size, the larger the size of the xylem, the lower the rate of the water transport, vice versa.

  1. An Investigation into Species Diversity with distance along a Pingo.

    Therefore plants with large leaves will have an advantage over those with smaller leaves for they have a larger surface area to absorb sunlight. Enzymes are involved in the photolysis of water in photosynthesis. Enzymes are globular proteins. They are biological catalysts, which act to speed up reactions whilst remaining unchanged themselves.

  2. What factors affect the rate of transpiration.

    The rate of transpiration slows down then stops. My theory is supported by a similar experiment carried out by another student in our class. Her procedure was identical except for the fact that she was not distancing the plant from the fan she was changing the speeds on the fan.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work