• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim of the experiment is to find the relative formula mass of an unknown acid in an acid solution that I was provided.

Extracts from this document...

Introduction

Table of contents 1.1 Aim of the experiment 2 1.2 Introduction 2 1.3 Equipments and apparatus 2 1.4 Safety precautions 2 2.1 Procedure 3 2.2 Apparatus setup 3 2.3 Analysis 4 3.1 Implementing 5 3.2 Analyzing 6 4.1 Evaluation 8 4.2 Comparison between experimental Mr with value 8 of likeliest acid 4.3 Conclusion 8 THE RELATIVE FORMULA MASS OF AN UNKNOWN ACID 1.1 Aim of the experiment The aim of the experiment is to find the relative formula mass of an unknown acid in an acid solution that I was provided. 1.2 Introduction I was provided with a solution of a monobasic (monoprotic) acid. Monoprotic acid is an acid that contains only one hydrogen atom. I was to determine the molarity of the acid by titration with a sodium hydroxide solution, and then use this molarity to calculate the relative formula mass of the acid. An acid is a substance that releases hydrogen ions when dissolved in water. There are two types of acids called organic acids and mineral acids. Organic acids, such as methanoic acid, citric acid or latic acid, are obtained from plant and animal sources. From the other side, mineral acids (hydrochloric acid, nitric acid or sulphuric acid) are made from minerals. ...read more.

Middle

3. Compare your calculated Mr value with the Mr value of likeliest acid. Calculate the percentage difference between these two values. 3.1 Implementing 1. Wash all the equipments used in the experiment (including burette, conical flask, pipette, pipette filler and beaker) with distilled water in the wash bottle. 2. Use pipette to transfer 25 cm3 of sodium hydroxide (alkali) solution into a conical flask. 3. Add 3 or 4 drops of phenol red indicator to the conical flask into which NaOH solution was put. 4. Fill the burette by pipette filler with acid solution up to point 0.00. 5. Take the point at which level of acid solution is least as the initial reading. Wash the side of conical flask during the titration. 6. Swirl the solution in the conical flask for the indicator to disperse evenly and continue swirling while adding the acid solution from the burette as well. 7. Start adding acid solution drop wise from the burette carefully to be able to stop adding acid solution at a correct point when the endpoint is reached. 8. When the purple colour starts to change to yellow, stop adding acid solution. This is the endpoint. 9. Read correctly the final reading of volume on the burette when the endpoint is reached. ...read more.

Conclusion

/ 250 = � 0.2% 3. The percentage maximum error in use of burette Burette � 0.15 cm3 (maximum error) % error = (0.15 � 100) / 28 = � 0.5% 4. The overall apparatus error The overall apparatus error = 0.2% + 0.2% + 0.5% = � 0.9% 4.2 Comparison between experimental Mr with value of likeliest acid My experimental value is 62.37 which are theoretically very close to the value of nitric acid from the table (shown in analysis part) whose value is 63. If I add the percentage of error to my experimental result, I will get the value of 63.27. Final experimental result = experimental value + the overall apparatus error = 62.37 + 0.9 = 63.27 % difference between experimental Mr and value of likeliest value = (62 / 63.27) � 100% = 100% - 97.99% = 2.01% 4.3 Conclusion From the titration process I found the molarity of the sodium hydroxide solution and the relative formula mass of the unknown acid. With further calculations I identified the correct formula of the acid. The experiment was done without any major mistakes and complications, although there were some minor mistakes in calculations due to the apparatus used. This could be solved in another experiment by using more appropriate equipments. It will reduce the overall percentage error and minimize the mistake. ?? ?? ?? ?? The relative formula mass of an unknown acid Mateja Dujmovic Ankara, Turkey 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. ‘The Relative Strength of an Unknown Acid’.

    and adding more distilled water if necessary until all the solute has dissolved. On completing that I will wash a 250cm3 volumetric flask out with distilled water. Then I need to transfer all the solution into the volumetric flask. I will do this using the aid of a funnel (which will have also been washed in distilled water).

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    If the end point had not been reached, (i.e. the solution did not appear as dark in colour as the others at the end point) the average titre point would be lower; therefore the concentration of Iron (II) would appear lower suggesting that the solution was less concentrated. If either of these had occurred the redox titration would have appear less accurate.

  1. Determine the relative formula mass and the molecular formula of succinic acid

    So the mass of the acid solution required to neutralize the standard alkali solution will be .00125*132=0.165g. Hence, the titration volume of solution will be 250/1.65*.165=25cm3 Similarly, if n=1 Mr of succinic acid will be 104. So the mass of the acid solution required to neutralize the standard alkali solution will be .00125*104=0.13g.

  2. Explain how the enthalpy change of neutralisation can be used to determine the relative ...

    Subsequently the distilled water will be gently poured into the beaker, making sure that any remaining solute on the watch glass will be rinsed gently into the beaker. To ensure the solute had fully dissolved, a thin glass rod could be used to grind and mix any large residual pieces

  1. Antacid Experiment.

    0cm-cubed 14.7cm-cubed 14.7cm-cubed Settlers 0cm-cubed 11.2cm-cubed 11.2cm-cubed The results that I collected from this lesson looked a lot more like the results which I had predicted, this could be because there was more accuracy but you can tell by comparing the results from this lesson and my predicted results, that they are very similar.

  2. The Use of Volumetric Flask, Burette and Pipette in Determining the Concentration of NaOH ...

    Hence a pH indicator is a chemical detector for protons (H+). Normally, the indicator causes the color of the solution to change depending on the pH. pH indicators themselves are frequently weak acids or weak bases. They bind Hydrogen ion (H+)

  1. Find out the percentage of citric acid present in lemon squash by using a ...

    As soon as the water was poured to the correct height (there were a few problems as there were unequal amounts and I had to keep on pouring again) I started the stop clock. I took down the RAJESH PATEL, 0175 CHEMISTRY COURSEWORK, PLANNING SKILL FINDING THE PERCENTAGE OF CITRIS ACID IN LEMON SQUASH (9)

  2. In order to find out the exact concentration of sulphuric acid, I will have ...

    had extra amount of solution available to me, in case I missed the end-point and had to repeat the titration from the beginning. This also ensured that there was sufficient amount of solution present to repeat titrations and so that average titre value could be worked out.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work