• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim of the experiment is to produce 1 - Bromobutane, an alkane within the bromine group on the terminal group.

Extracts from this document...

Introduction

Preparation of 1 - Bromobutane Aim The aim of the experiment is to produce 1 - Bromobutane, an alkane within the bromine group on the terminal group. Chemical Safety Chemical Hazards Safety measures Sodium Bromide No hazards None Butan - 1 - ol Harmful vapour, in liquid state chemical is harmful to skin, can be absorbed and cause internal damage. Flammable. Wear goggles and gloves. If spilled ventilate area and wash contact area. Sulphuric Acid Very Corrosive to eyes, skin and materials. Wear gloves and goggles. For large spillage spread sodium carbonate on spill and wash with water If contact with skin occurs wash with water. Sodium Hydroxide Corrosive. Skin contact harmful. Solution can cause burns. Very dangerous to eyes. Wear cloves and goggles. If contact with skin or eyes occurs wash thoroughly with water. Diagram Method * Set the equipment up as shown above (picture 1) * Dissolve 8g of sodium bromide in 10cm3 of pure water and stir to create a homologous solution * Add the sodium bromide to 7 cm3 of butan-1-ol in a 50 cm3 pear shaped flask. To this then add 10 cm3 of concentrated sulphuric acid 1 cm3 at a time. ...read more.

Middle

This bromo group then associates itself with another H+ ion to form water: CH3CH2CH2CH2OH + Br- > CH3CH2CH2CH2Br + OH- In the final stage a molecule of sulphuric acid attacks the lone pair on an -OH function group. This releases a molecule of water, and a mixture of Butoxybutane and But-1-ene is formed, along with the regenerated Sulphuric Acid: CH3CH2CH2CH2OH + H2SO4 > CH3CH2CH=CH2 + H2O + H2SO4 or 2 CH3CH2CH2CH2OH + H2SO4 > CH3(CH2)3O(CH2)3CH3 + H2O + H2SO4 Results Mass of NaBr in pot = 11.47g Mass of pot = 3.49g Mass of Sodium Bromide = 7.98g Mass of collecting beaker = 54.25g Mass of distillation and beaker = 58.47g Mass of 1 bromobutane collected = 4.22g Yield Obtained Theoretical yield = (moles of limiting reagent)(stoichiometric ratio; desired product/limiting reagent)(Mr of desired product) = (0.0941 mole)(1 mole / 1 mole)(137.03g/ mole) = 12.9g Actual mass gained = 4.22g Therefore actual yield = (Actual yield / Theoretical yield) x 100 = (4.22/12.9) x 100 = 32.7% Conclusion From my experiment I have found out that the practical yield of 1 bromobutane when made from butan - 1 - ol, is a lot lower than the theoretical yield, which was stated in a textbook. ...read more.

Conclusion

One of the easiest problems would have been to use sensors during distillation to record the temperature this would mean that fewer impurities would have been boiled off by accident. Also by setting up the experiment so it was easier to change between conical flasks would reduce that amount of distil which was missed during the change over. Another improvement to increase the yield would be to run the experiment at optimum conditions, which would promote a faster rate of reaction due to more collisions occurring and therefore more products being formed and a higher yield being collected. A final improvement to gain a higher yield would be to have allowed the solution to "dry" for longer this again would cut out some more impurities and therefore increase the yield. This was not done during the actual exam as time was running out and instead of letting the solution settle and then filter out the solid, the solution was allowed to settle and then the clear layers were removed and placed into the pear shaped flask using a pipette. Even though there were some areas in which the experiment could have been improved I feel that the experiment went to a decent degree of accuracy and this is shown by the fact that I got quite a large percent of the theoretical yield in my practical yield. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Antacid Experiment.

    When we was doing the experiment, and was adding the 1m-hydrochloric acid to the solution, you could see that on some of the tablets not all of it had dissolved properly, where as some the whole tablet had completely dissolved.

  2. In this experiment, we aim to investigate the effect of sodium carbonate on hard ...

    Firstly, there was a problem with temperature. Unfortunately, the temperature of the laboratory when we conducted the experiment was beyond our control, and it could have fluctuated and had an effect on the results in the process. Secondly, the temperature of the water used for the tests may not have been entirely constant, either.

  1. The aim of this experiment is to answer the following question: What is the ...

    It is quite misleading to show the positive charge just on the oxygen, because is actual fact the charge is delocalised over the entire double bond with the carbon. Therefore it is more accurate to show the molecules like this: These two structures are not complete representations of the ion as it can occurs in both ways.

  2. The Group VII elements - Halogens

    in concentrated NH3 AgBr Cream precipitate in water Slightly soluble in dilute NH3 Soluble in concentrated NH3 AgI Yellow precipitate in water Insoluble in dilute NH3 Insoluble in concentrated NH3 OXIDISING NATURE OF THE HALOGENS The following is a brief description of an experiment that can be carried out to

  1. copper practical

    This converts it to copper oxide, which has a higher copper content within it, therefore making it more concentrated. Separating the copper This is process of several steps. 1) Matte is produced in a flash furnace. The dry ore is mixed with sand.

  2. The preparation of 1- Bromobutane

    Since Sulphuric Acid acted as a proton donor, Hydrogen joins onto the Oxygen. Water is released (condensation). As a result Carbon will have a positive charge, now turned into a Carbocation. 4. Sodium Bromide will dissolve in water, which will act as a solvent.

  1. The aim of this assignment is to produce 1-bromobutane in the laboratory and write ...

    H-C- C- C- C-H ? ? ? ? H H Br H 2-bromobutane 2) H H H H ? ? ? ? H-C-C-C-C-Br ? ? ? ? H H H H 1-bromobutane 3) H ? H H - C-H H ?

  2. Objective:1. To study the preparation of 1-bromobutane from 1-butanol ...

    Procedures: The experiment was divided into three parts and worked in pairs. A) Preparation of 1-bromobutane from 1-butanol 1. 18.0 mL of 1-butanol was weighed into a 50 cm3 beaker. The exact amount of 1-butanol used was being marked. 2. The 1-butanol was transferred into a 100 cm3 round-bottomed flask.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work