• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim of this experiment is to determine the water potential of celeriac cells by investigating the osmotic effect of different concentrations of sucrose on the cells.

Extracts from this document...


Biology Assessed Practical - Rosalind Brock Spring 2003 The water potential of Celeriac Aim The aim of this experiment is to determine the water potential of celeriac cells by investigating the osmotic effect of different concentrations of sucrose on the cells. Background Theory Osmosis is the diffusion of water molecules across a partially permeable membrane from a region of high water potential to low water potential. Water molecules always move from areas of high concentration, to areas of low concentration. In an ordinary solution or mixture, the particles of both substances diffuse so that there is a uniform spread of particles throughout the mixture. However, if there is a partially permeable membrane, only the water molecules are small enough to pass through it and the larger solute molecules remain on one side of the membrane. The water molecules will move from where there are more to where there are less of them. Since diffusion occurs at random, the water molecules will in fact be passing both ways, but the net change will be from high concentration to low concentration. The tendency of a solution to lose water in this way is called its "water potential". So, water moves from areas of high water potential to areas of low water potential. The symbol for water potential is the Greek letter psi - Q, and it is measured in kilopascals (kPa). Water potential has two components, pressure potential (Q[p]) and solute potential (Q[s]). The overall Q of a cell is the sum of the two components. The Q of pure water is set at zero by convention, so the Q of any cell or solution is =< 0. Since osmosis occurs down a concentration gradient, solutes will lower the water potential of a solution. The amount the water potential is lowered by the solutes is the solute potential, so Q[s] always has a negative value. ...read more.


This is a limiting factor of the mass loss. Equally a cell cannot go on gaining mass for ever, since at some point the turgor pressure will balance out the solute potential and the cell will have Q = 0, (i.e., fully turgid) and not gain any more mass, so there is also a limiting factor for the mass gain. Therefore, I would expect a graph of the shape shown below. [image008.jpg] Main Experiment Planning a fair test Independent variable: Sucrose concentration Dependent variable: Percentage change in mass Controlled Variables: starting length of celeriac tubes, starting thickness of celeriac tubes, exposed surface area of celeriac, type and age of celeriac, volume of sucrose solution, time tubes are left in solution, amount of drying on absorbent paper. � All the tubes will be cut to 7cm long in order to control starting length, � All the tubes will be cut with a size 3 borer to control starting thickness, � Using the same length and thickness will control surface area, and the tubes will be cut perpendicular to their length to give an equal "end" area on each tube. � All 24 tubes will be cut from one large celeriac if possible � 10cm^3 of sucrose solution will be used in all cases. � All the tubes will be left in their solutions for half an hour. � The tubes will all be rolled once on the absorbent paper to dry off just the drips of solution. Apparatus Size three borer - completely accurate if the same one is used for all 15 tubes Ruler - accurate to 1mm Scalpel Cutting mat Top pan balance - accurate to 0.01g Test tubes, Cling film, 10cm^3 syringes - accurate to 0.1cm^3 Forceps Absorbent paper Risk assessment Method 1. The top was cut off a large celeriac in order to give a flat surface. 2. The celeriac was placed flat side down on a cutting mat. ...read more.


The best way to minimise the effect of this error would probably have been further repeats, since it is difficult to control the density of the celeriac. The volume of sucrose solution could have been better controlled by using more precise measuring equipment, a Pasteur pipette and filler for instance. The time that the tubes were left in the solution could be more precisely measured if the test tubes were done one at a time, or at least staggered over regular intervals, so that the potato tubes could be put in and taken out at the precise moment. However, since equilibrium should have been established by the time of removing the celeriac tubes, the effect of slight differences in the time the tubes were in sucrose should have been minimal. The amount of drying was also quite hard to control. Since the higher concentrations are more viscous, less solution tended to come off the celeriac tubes, but if gentle and uniform pressure were applied to the tubes as they were dried, perhaps by doing it mechanically, then this would be fairer. It would be beneficial to do further repeats to find a more accurate average for each result. This experiment could be extended to find out whether a limiting factor was affecting the loss of mass. Using concentrations of up to 1.5M would also enable the point of no change in mass to be seen more clearly. If the dry masses of several 7cm celeriac tubes were taken and averaged, then the total mass of water could be found by comparing this figure to the mass of the tubes before they were dried. Then the percentage of the tube's mass that is water could be found. The experiment could be continued with higher and higher molarities, until the graph had completely reached a plateau. The percentage at which the tubes stopped losing mass could be compared to the percentage of water in the tubes, and if the figures were about the same, then this would prove the hypothesis that a limiting factor was total plasmolysis of the celeriac cells. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. What effect does the sucrose concentration have on osmosis?

    Method Apparatus Apparatus: * Potato * Scalpel * Ruler * Test Tubes * Sucrose Solution * Measuring Cylinder * Distilled Water * Cutting plate Experiment Instructions: 1. Firstly I will make sure that all the potato chips weigh roughly the same.

  2. Determine the water potential of potato tuber cell with the varying affect of solute ...

    Protoplast peeled away Concentrated solution The reason why we use a potato cylinder is because it is made up of plant cells plus the fact that it has a partially permeable membrane. So to be able to determine the water potential it is essential to know the structure of the plant cell membrane.

  1. The effect that different concentrations of salt solution in the water has on strips ...

    0.48 - 0.66 x100 = -27.77% 0.66 1.0 (A) 0.56 - 0.73 x100 = -23.29% 0.73 Average = -22.13% 1.0 (B) 0.49 - 0.62 x100 = -20.97% 0.62 Evaluation - We can see by looking at the graph and the table of results that as the as the concentration of salt solution in the water increases, the mass of the potato strips in the water decrease.

  2. Experiment to Compare Stomata Density in Different Dicotyledonous

    To do bend the leaf towards the end of the painted area. Hopefully the epidermis peel should start to separate from the leaf and the tweezers can be slide underneath and a large epidermis peel should come off easily. 3.

  1. To investigate the effects of using different concentration of Sucrose solutions in Osmosis with ...

    In this particular experiment it was found that using distilled water, after twenty minutes, the slices of cucumber had absorbed nearly 10% of their original mass in water (about 0.30 grams in this test). The opposite occurs when the concentration of impurities is in solution outside the cell.

  2. Investigation into the relationship between the density of fresh water shrimps in fleet brook ...

    The universal indictor will allow me to estimate the pH by matching the colour of the test solution with a colour chart. This is extremely prone to errors in that it is often very difficult to obtain test solutions with exact matching colours as the chart.

  1. An investigation into the effects of different concentrations of lead chloride on the growth ...

    figures The results illustrate that the most effective distribution in planting the cress seeds is by using a grid method where rows of "5 seeds are arranged, to produce a grid affect. This method had the greatest average length of 16.5 mm.

  2. Osmosis investigation. My prediction is that as the concentration of the solute increases, ...

    and water to have more precise mixtures, which would bring the results closer to the true values as osmosis is affected by the solution concentration. I would also have the borers ends straightened out as they are turn inwards slightly which causes and uneven surface, which affects the control of, surface area of the bored potato.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work