• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

The aim of this experiment is to show how different masses attached to a piece of string, connected to a 'friction free' trolley, would affect the speed at which the trolley accelerated up an incline.

Extracts from this document...

Introduction

image00.png

AIM

The aim of this experiment is to show how different masses attached to a piece of string, connected to a ‘friction free’ trolley, would affect the speed at which the trolley accelerated up an incline.

PRELIMINARY EXPERIMENT

The first idea was to measure the speed of a trolley over a one-metre distance once it had been released down a decline. This was carried out in the preliminary experiment, but after some discussion and consideration it was decided to change the experiment to meet the aim above.

Carrying out the preliminary experiment enabled me to choose the factors that should be constant and the factors that needed to be altered. The results from the preliminary experiment showed what criteria I needed to consider.

1.        The mass to be used to enable the trolley to go up the ramp at a suitable velocity and with suitable acceleration.

2.        The position on the ramp that would allow the trolley to depart in order to make the test fair and the speed accurate. It was found that if the trolley was put near the bottom of the ramp it would not gain enough velocity to reach the top of the ramp and would cause an inaccurate result.

3.

...read more.

Middle

For the duration of the experiment the following apparatus will be used:

1x Friction Free Trolley,

1x Smart Pulley,

1x Computer (for recording results)

1x Plank of wood to act as ‘incline’,

1x 2m length of String,

10x 50g Weights,

1x 30cm Ruler,

1x Calculator,

2x Stand,

2x Clamp,

2x Boss,

FACTORS THAT MAY AFFECT THE OUTCOME OF THE EXPERIMENT

1.        Acceleration

In the formula F=Ma, the measure of force is in Newton’s, the mass will usually be in grams or kilograms and the acceleration will be measured in meters per second. Newton's second law of motion is more abstract than the first law. The second law includes all acceleration and is very simple to comprehend. Acceleration comes about when a force acts in some direction on a body. The larger the mass of the body, the more force is needed to accelerate it.

Acceleration= the rate of change of velocity with time. You can calculate it using the equation below:

Acceleration = velocity change / time taken for the change

The units for acceleration are a little complex. We know that velocity is in m/s. Therefore, a change in velocity must also be in m/s. Time is of course, in seconds. Together, this information gives units for acceleration of metre per second, per second.

...read more.

Conclusion

Taking three sets of results on each weight proved that the smart-pulley was dependable because all three of the readings were nearly identical each time. By taking this number of results also ensured that there were not any anomalous results. I can verify this because the line of best fit went through the plotted results on my graph. Plotting a rough graph as I carried out the experiment simplified matters because I was able to keep track of my results and ensure no mistakes were being made.

Given more time I would have repeated the whole experiment and would have taken 5 or more readings of each weight to guarantee that my results were indeed reliable. In conclusion, I am sure that my results show a high degree of accuracy and are dependable enough to draw a reliable conclusion.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. What affects the acceleration of a trolley down a ramp?

    I decided to compare the stop clock to light gates. Light gates should be more reliable because they don't rely on human response. Plan for stopwatch. Apparatus Trolley Ramp Ruler Stop clock Clamps Metre rule 1. Set up the equipment as shown above.

  2. How does the weight of an object affect the friction it has on the ...

    At this point, friction is said to be limiting. Dynamic friction Dynamic friction, also called sliding or kinetic friction acts opposing the direction of motion. It prevents an object from moving as fast as it could if friction was not present.

  1. An investigation into the acceleration of a trolley up a ramp.

    (although I doubt it was the case) Also the ramp could have not been, flat, there was a possibility that it was on a slope which would have meant that the trolley would have been going across the ramp instead of straight up it.

  2. An investigation into factors that effect the braking distance of a trolley

    By the time the trolley reaches the end of the ramp all the GPE will have converted to KE. Conclusion The graph clearly shows there is a strong positive correlation between the height of the ramp and the stopping distance of the trolley.

  1. Factors Affecting the Speed of a Car after Freewheeling down a Slope

    The theoretical results were calculated assuming that there was no air resistance or friction. The line of best fit on my graph followed the general pattern of the curve of the theoretical results. This indicates that my experiment was done correctly and that the results were close to what was expected.

  2. Trolley Speed

    the kinetic energy at 32cm by the kinetic energy at 16cm the answer is 2.89 (2.D.P) If you then divide the speed at 16cm by the speed at 32cm and then square the answer the answer is 2.86. Although the answers were not exact because 0.8 J was rounded to 0.81 J they are very similar.

  1. Investigating the Factors Which Affect the Motion of a Trolley Down an Inclined Plane

    Accurate experiments show that if you push double the mass, with the same force, the acceleration is only half what it was. These results can be summarized by saying that acceleration is inversely proportional to mass. Equation Two Acceleration ?

  2. Investigation into Friction.

    Smooth and rough hardboard will be used. The two independent variables will not be changed at the same time, so that the test remains fair. The first part of the experiment will be done using the smooth hardboard; the masses on the wooden block will be varied; then the experiment will be repeated exactly, but using the rough hardboard instead.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work