• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28

The aim of this investigation is to compare the enthalpy of the following different fuels:Ø Methanol - CH3OHØ Ethanol - C2H5OHØ Propanol - C3H7OHØ Pentanol - C5H11OH

Extracts from this document...


Aim: The aim of this investigation is to compare the enthalpy of the following different fuels: > Methanol - CH3OH > Ethanol - C2H5OH > Propanol - C3H7OH > Pentanol - C5H11OH Background Information Crude oil (petroleum) is our main source of food and organic (carbon-based) chemicals. Crude oil is a thick, smelly, dark brown liquid. It is a mixture of hundreds of compounds. These vary from simple substances like methane (CH4) to complex substances with dozens of atoms per molecule. Most of the compounds in crude oil are hydrocarbons. Crude oil itself is useless. It must be separated into different fractions before it is used. Each fraction contains a mixture of hydrocarbons with similar properties. Some of the fractions contain volatile hydrocarbons, which are easily vaporized. These fractions can be used as petrol. Other fractions are much less volatile. They can be used as fuel for ships and power stations. A furnace first heats the crude oil and the vapours pass into the lower part of the fractionating column. As the vapours rise up the column through holes in the trays, the temperature falls. Vapours of different compounds condense at different heights in the column as the temperature falls below their boiling points. Liquids such as petrol (gasoline), which boil at low temperatures, condense high up the column. Liquids such as diesel oil, which boil at high temperatures, condense lower down. Each fraction from crude oil contains a mixture of similar compounds with roughly the same number of carbon atoms. The uses of the various fractions depend on their properties. Fraction Boiling range/?C Number of carbon atoms in molecules Uses Refinery gas Up to 40 (below room temperature) 1- 4 Fuel for gas cookers, LPG, GAZ, plastics Petrol (gasoline) 40 - 140 (40?C) 5 - 10 Fuel for vehicles, chemicals Naphtha 140 - 180 (110?C) 8 - 12 Raw material for chemicals and plastics Kerosene (paraffin) ...read more.


= 10 x 346 = 3460 22(C - H) = 22 x 435 = 9570 2(C - O) = 2 x 336 = 672 2(O - H) = 2 x 464 = 928 30(O = O) = 30 x 497 = 14910 20(C = O) = 20 x 803 = 16060 24(O - H) = 24 x 464 = 11136 Total: 29540 KJ Total: 27196 KJ Two moles of pentanol releases: ?H = Bond Broken - Bond Formed = 29540 - 27196 = 2344 KJ One mole releases: 2344 2 = 1172 KJ/mol By using my background information, I can predict that the energy released increases as the chain length of an alcohol increases. This prediction is based on the bond energy calculations: the energy released per mole. This means that the fuels will come in the following order: Methanol, Ethanol, Propanol, Pentanol The above fuels have different boiling points so will boil at different temperatures due to different chain lengths. At higher temperatures, particles are moving faster, so there are more collisions. Also, and more importantly, the collisions are more energetic. More collisions have energy greater than the activation energy. The molar heat of combustion of a fuel is the amount released when one mole of a substance burns in the air. The graph below shows the relationship between the heat of combustion and a series of alkanes: Alcohol Heat of combustion, from data book (KJ/mol) Ethanol 1130 Propanol 2020 Butanol 2680 As shown, the increased heat of combustion seems to be associated with an increased number of atoms in the fuel. This is the reason how I made my prediction that the energy released increases as the chain length increases. This should also apply to the alcohols. Fair Testing To ensure that my experiment is fairly carried out I shall do the following: * I should not give priorities to one fuel only. ...read more.


This is because the amount of heat loss from the other practicals going on varied and inter-related with my experiment giving either more heat to it by giving a slightly higher temperature. This means that I could not keep my temperature variable constant. Conclusion The aim of my investigation was to compare the enthalpy of four different fuels. My book values were very high and so were my predicted values. My practical results did not show a relationship due to the conditions in the laboratory by other same practicals taking place. Therefore, their heat loss affected my results. This means that my results are not firm enough to draw a conclusion as the conditions in the laboratory affected my results by varying them. This is shown not only in my results but also in my graph and my calculations. Evaluation To improve my experiment I could do quite a lot of things. Firstly, I could have used a calorimeter and an insulated lid on top to prevent heat loss. All the windows should have been closed so that the heat could not escape outside. The experiment should not have been carried out near a window as I was allowing extra heat in. I should have used the same balance, as different balances have different values. It was good that I used height blocks to get the spirit lamp underneath the beaker. For extra prevention I used aluminium foil so that the heat reflected back to the calorimeter. This was good. I also used height blocks to minimise heat loss and tried to put the spirit lamp under the beaker. However, the spirit lamp was not directly under the beaker. I felt that it was good that I took a range of readings by getting two sets of results then taking the average. This improved the accuracy of my results. However, I could have taken a second opinion of the readings. By asking someone else what reading they saw I could see whether I made a mistake in my reading and from some of my results I see that I have made mistakes. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. Marked by a teacher

    What an ester is, how it is made, examples of esters, animal testing issues ...

    4 star(s)

    1.no 2.yes 3.no 4.no 5.yes 6.no 7.no 8.no 9.yes 10.no 1. Are cosmetics essential in your daily life? The graph above shows that out of 10 people (5 females and 5 males) 8 people (the majority) believe that cosmetics are essential in their daily lives.

  2. Marked by a teacher

    Viscosity of Alkanes

    3 star(s)

    > Water Bath full of cold water. Method 1. Place Alkanes in the Water Bath 2. Place Microscope slide at the fixed height of 2cm (determined from the preliminary testing) on top of the plasticine. 3. Collect a small amount of the alkane in the dropper. 4. Release two drops of the alkane, right at the top of the Microscope Slide, 5.


    First the calorimeter the water is contained in must be the same shape because if it is not the flame may have more surface area of where to heat the water. The calorimeter must also be weighed before and after water has been placed in it so the actual mass of the water could easily be gotten.

  2. To determine which alcohol, out of ethanol and propanol, is the better fuel. By ...

    HYPOTHESIS I predict that propanol will be the better fuel and that it will release the greatest amount of energy per mole. I will use the energy released per gram to compare the two alcohols. I predict this because I believe that as more carbon atoms are added the greater the amount of energy it will release.

  1. Comparing fuels

    There was some incomplete combustion which I should have thought about and maybe changed some things in the experiment because of them. The size of the wick may have been different in the different fuel pots. I did the butanol experiment under different conditions than the ethanol and methanol.

  2. Find out the heat of combustion in the five fuels; Methanol, Ethanol, Propanol, Butanol, ...

    Safety; To make it safe to do the experiment I have to wear safety goggles because some of the fuels are corrosive, with means if it touches your skin it will itch and sting. My personal processions .e.g. my bag and coat have to be out my way because if

  1. Comparing the enthalpy changes of combustion of different alcohols.

    * Change the water in the copper can again using the measuring cylinder to pour the 200cm3 of water into the calorimeter, again measuring to the bottom of the meniscus * Repeat the experiment three times. * Repeat the same experiment with the other alcohols, using the method above, keeping all conditions the same.

  2. Investigate the enthalpy change of different alcohol

    can with a lid -using a fixed position from the base of can to the flame Preliminary test I carried out similar experiment to find out if several changes would lead me to a different results from the experiment: > Testing with the size and height of can: Can 1)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work