• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Combustion rate of Alcohols and how much energy is required to break their bonds

Extracts from this document...


Lordswood Boys School My Investigation H Name : Alex Byrd Set: 11Z The Combustion rate of Alcohols and how much energy is required to break their bonds Planning I am going to investigate what happens when I heat some water using sprit burners containing different alcohols and then find how much mass was lost. As I am going to be heating water up then some way or another I will be losing heat, plus if I'm in a room with a window open then the flame will be disturbed and the beaker will cool down from the cool air coming through. To help prevent this I shall put cardboard pieces around the flame to protect the flame and the beaker. I am going to use a copper container because it conducts heat better and so there will be better results. Diagram Sprit burners: Propanol Methanol Hexanol Ethanol Pentanol Copper beaker 50 ml water Clamp stand Clamp claw 4 cardboard tiles Heat proof mat Splint Lighter Measuring cylinder 1) Firstly set up the clamp stand and attach the clamp claw to it. ...read more.


I am going to use 5 different alcohols and repeat the experiment 3 times then I am going to take an average result. I predict that the alcohols with the bigger Carbon chain will need more energy to burn, because there are more bonds and so it is harder to break them all up. Science Theory I predict this because I have calculated the energy required to break the hydrocarbon bonds. I did this by working out the mass of the reactants and taking this away from the products. The results show that to break the methanol hydrocarbons would require less energy than to break the pentanol hydrocarbon and even more energy is required to break octanol hydrocarbons. This is because the structure of the carbon atom, each carbon atom is covalently linked to four hydrogen atoms this causes a structure of great hardness. This means that methanol will lose the most mass because less energy is needed to break the bonds. ...read more.


My prediction was correct because what I predicted in theory is true. Evaluating Problems There weren't many problems that faced me with the experiment. Accuracy. My results are as accurate as I could possibly get them, I tried to do an accurate fair test but without the exact equipment heat would always be lost and cause inaccuracies in my results. If I were to re-do my experiment I would investigate ways in which I could retain the heat maybe by surrounding the spirt burner in tin foil and around the metal container. If I were able to do this safely then I would be able to get more accurate results, which then may prove my theory correct. Odd Results. There weren't any odd results. Firm Conclusion Looking at my results and the results I was able to obtain I conclude that the smaller the hydrocarbon chain the less energy is needed to break the covalent bonds so more mass will be lost. The longer the hydrocarbons the more energy is required so less mass will be lost. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. Marked by a teacher

    Experiment to investigate the heat of combustion of alcohols.

    4 star(s)

    = 4.5 x 498 2 (C - C) = 2 x 347 = + 6619 J = - 8542 J Energy Change = 6619 - 8542 = - 1923 kJ/mol. Butanol C4H9 OH + 6O2 4CO2 + 5H2O Bond Breaking Bond Making 9 (C - H) = 9 x 412 8 (C = O)

  2. Titration experiment - write up

    I have placed the best results which are all 0.1 cm3 of each other. The average titre: To work out the average titre volume I will take three out of the five readings that are all within 0.1 cm3 of each other.

  1. Investigating the Combustion of Alcohols

    -2512 -2675.6 Pentan-1-ol -1136.1 -3130 -3328.7 Using this summary table, a graph was plotted to show the trend more clearly and to compare against the theoretical values. Graph: to show the trend between successive alcohols and their enthalpy changes of combustion.

  2. Molar Heat of Combustion of Alcohols

    = 2CO2 + 3H2O The Bonds Broken In the Reaction: 3*O=O 3*498=1494 5*C-H 5*413=2065 1*C-C 1*347=347 1*C-O 1*336=336 1*O-H 1*464=464 1494+2065+347+336+464= +4706kJ The Bonds Made In the Reaction: 4*C=O 4*805=3220 6*O-H 6*454=2724 3220+2724= 5944kJ 4706-5944=-1238 The theoretical molar heat of combustion of ethanol is 1238kJ Propanol Propanol + Oxygen =

  1. Comparing the enthalpy changes of combustion of different alcohols.

    * Change the water in the copper can again using the measuring cylinder to pour the 200cm3 of water into the calorimeter, again measuring to the bottom of the meniscus * Repeat the experiment three times. * Repeat the same experiment with the other alcohols, using the method above, keeping all conditions the same.

  2. Comparing the enthalpy changes of combustion ofdifferent alcohols.

    -630 KJ mol-1 Propan-1-ol (2) -822 KJ mol-1 -698 KJ mol-1 Propan-1-ol (3) -641 KJ mol-1 Propan-2-ol (1) -630 KJ mol-1 Propan-2-ol (2) -657 KJ mol-1 -637 KJ mol-1 Propan-2-ol (3) -625 KJ mol-1 Butan-1-ol (1) -586 KJ mol-1 Butan-1-ol (2) -657 KJ mol-1 -641 KJ mol-1 Butan-1-ol (3)

  1. To investigate the relationship between the structure and heat produced by combustion for a ...

    The final formula is: ?H = (MC?T / ?M2) x RMM PREDICTION The formula for the energy released in a reaction is: Energy released = energy released in making bonds - energy absorbed in breaking bonds. Breaking bonds requires energy and making bonds gives energy out on the basis that

  2. GCSE Chemistry Revision Notes - everything!

    Uses of carbon dioxide Carbon dioxide should be used in place of water to extinguish fires, as it is a very dense gas. It is also used to make fizzy (carbonated) drinks. The gas is dissolved under pressure and is released when the bottle or can is opened.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work