• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The effect of concentration on the rate of reaction between sodium thiosulphate and dilute hydrochloric acid

Extracts from this document...


The effect of concentration on the rate of reaction between sodium thiosulphate and dilute hydrochloric acid This investigation is about rates of reaction and what affects them. In this case I am going to look at hydrochloric acid and sodium thiosulphate which is a precipitation reaction causing the solution to go 'cloudy'. They react as in the equations below: sodium thiosulphate + hydrochloric acid -> sodium chloride + sulphur + sulphur dioxide + water Na2S2O3(aq) + 2HCl(aq) -> 2NaCl(aq) + S(s) + SO2(g) + H2O(l) A reaction will only occur where the particles of the reactants meet and combine. This is called the collision theory. For a reaction to occur particles have to collide with each other. Only a small percent result in a reaction. This is due to the energy barrier to overcome. Only particles with enough energy to overcome the barrier will react after colliding. The minimum energy that a particle must have to overcome the barrier is called the activation energy, or Ea. The size of this activation energy is different for different reactions. If the frequency of collisions is increased the rate of reaction will increase. However the percent of successful collisions remains the same. An increase in the rate of reaction can be achieved by increasing the frequency of collisions. Therefore to increase the rate of reaction it is necessary to cause more particles to collide harder and collide more often. There are several ways to do this and these make up the factors for this experiment. They are listed below along with predictions as to their affect on the reaction. Possible Factors To make sure I carry out a fair test I will only change the concentration of sodium thiosulphate. ...read more.


This increases the probability of reactant particles colliding with each other meaning the rate of reaction will be quicker. Plan Apparatus Pipette, burette, measuring cylinder, sodium thiosulphate (0.01 mol/dm�), dilute hydrochloric acid (2.00 mol/dm�), distilled water, stopwatch, conical flask, paper with cross marked on, goggles. Method I will measure out the required volumes of sodium thiosulphate and water (see measurement table) using a burette. I will transfer these to the flask . I will then stand the flask on a piece of paper with a cross marked on it with a pen or pencil. I will measure out the acid using a pipette, as this is highly accurate for measuring, and add it to the flask at the same time I start the stopwatch. I will then record the time for the cross to be no longer visible. I will repeat the whole procedure for more reliable and average results. If after plotting a graph I may come across some anomalous results. I will repeat the certain amounts and see what results I get the second time. If the results fit in better with the line of best fit this will tell me that a mistake was made in the first set which affected the rate of reaction. THIO (cm�) HCl (cm�) WATER (cm�) 50.00 10.00 0.00 45.00 10.00 5.00 40.00 10.00 10.00 35.00 10.00 15.00 30.00 10.00 20.00 25.00 10.00 25.00 20.00 10.00 30.00 Measurement table Diagram Conical flask Thio, HCl, water solution Cross marked on paper Predicted graphs Graph 1 Graph 2 time 1/t conc. conc. The time taken for the cross to As the concentration increases disappear decreases as the concentration time decreases increases Inverse proportionality conc = 1 time Graph 1 - This graph shows the time taken for the cross to disappear. ...read more.


One example would be judging the cloudiness of the solution. It all depends on your eyesight whether or not you think the cross has disappeared and with different people doing the same experiment, the results are going to vary slightly depending on how good or poor your vision is. One way of getting round this situation is to use a device which detects the cloudiness of the solution. The device can be set up as follows: firstly a beam of light is directed through the solution and on to a photocell at the other side. The photocell is linked to a voltmeter. The solution starts to get cloudy as the reaction takes place. When the solution gets so cloudy that the beam of light no longer reaches the photocell the voltmeter stops reading the voltage and a timer stops automatically. Using such a device enables you to get more accurate and fair results because the elapsed time will be recorded at the same degree of cloudiness for each test. I think the range of results I had was satisfactory, although maybe a bigger range of measurements would make it more reliable. However I don't think this was necessary when looking at my graph, because the range of results I obtained clearly indicates the effects of concentration on the rate of reaction. Apart from two anomalies, which were repeated and confirmed , my experiment was generally accurate. I can confirm this is true because the line of best fit on both my graphs is similar to that on the predicted graph which demonstrates accuracy. I believe it was a fair test. I gathered enough evidence to support my prediction and therefore can say that my experiment went well. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Investigation into the Effect Concentration has on Rate of Reaction.

    10 second intervals - Reading One 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 Concentration of HCl/% 100 5 7 11 15 18 21 24 28 32 35 40 44 48 52 55 60 63 67 90 4 6 9

  2. An investigation into the effect of concentration on the rate of reaction. The disappearing ...

    to react with the sodium thiosulphate particles (Na2S2O3), and therefore it takes less time for the precipitation to form and the cross to disappear, as shown by doing the experiment and drawing the graph. I have also proved the part of my prediction right in which I predicted that my

  1. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    The pipette was washed thoroughly with distilled water and dried after before pipetting the next substance into the next test tube to prevent mixing of the substances, which can affect the precision, accuracy and reliability of the experiment. 5 cm3 of silver nitrate solution, AgNO3, was pipetted into the fourth test tube.

  2. Effect Of Substrate Concentration On The Activity Of Catalase

    The increase in heat gave an increase in the kinetic energy. This means that there would be more collision between the hydrogen peroxide particles and the catalase, which would lead to a better chance of collision being successful. This experiment is related to my first experiment as the increase in

  1. Find out how the concentration of the reactants affects the rate of reaction between ...

    I will then look down the flask to look at the cross until I cant see the cross no more and at that point where I cant see the cross any more I will stop the stop clock straight away. I will then record the time down in my book.

  2. Design an experiment to investigate the effect of varying the temperature of Sodium Thiosulphate ...

    Using my measuring cylinders, I will measure out 25ml for each solution. (Water, thiosulphate, and hydrochloric acid). Then I will place my 25ml of sodium thiosulphate with my 25ml of water. At the same time I will set up my Bunsen burner, tripod, gauze and heat proof mat as I did in "2" in my diagram.

  1. We will carry out an experiment to see how concentration affects rate of reaction ...

    This means there are more reactions (collisions between the Sodium Thiosulphate and the Hydrochloric Acid), so more of the product (which is a gas) will be produced, and the cross will be clouded over by the gas quicker. Even though when you increase the concentration, there is the same proportion (percent)

  2. To see the effects of a change in temperature and concentration on the rate ...

    However if one set of results is entirely different to the other, a third experiment will be performed to replace the anomalous set of results. Safety � A pair of goggles will be worn during the heating part of the experiment in order to protect the eyes.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work