• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

The effect of concentration on the rate of reaction of Magnesium with Sulphuric Acid.

Extracts from this document...


The affect of concentration on the rate of reaction of Magnesium with Sulphuric Acid. Aim My aim is to determine how the concentration of sulphuric acid affects the rate of reaction between magnesium and sulphuric acid. I am going to do this experiment five times with five different concentrations: 0.2, 0.4, 0.6, 0.8, and 1mol. The concentration of the acid is recorded in moles per decimetre cubed (mol/dm�). I am going to repeat the experiment for each concentration three times to make my results more reliable. Introduction A rate is a measure of the change that happens in a single unit of time. A reaction is when particles called reactants collide and form new substances. Theses substances which are created are called products. The rate of a chemical reaction is how fast the reactants react against each other. Some reactions happen very fast, e.g. an explosion, while other reactions will be much slower, e.g. rusting. The reactant particles are only able to react when they successfully collide with each other. Not all collisions are successful because the particles don't have the correct activation energy. Activation energy is the minimum energy required before a reaction can occur. ...read more.


I will then plot five graphs, one for each concentration. I will plot average volume of H� against time. My graph will be plotted on something like this. I will calculate the gradient of each graph, which will give me the rate of reaction for that concentration. Gradient = y2-y1 x2-x1 Variables Independent - concentration of sulphuric acid (H+ ions) will increase by 0.2mols each time (0.2, 0.4, 0.6, 0.8, or 1mol/dm�) Dependant - the amount of hydrogen gas that is given off (cm�) Controlled - the starting temperature of sulphuric acid, catalyst, surface area of magnesium (5cm), volume of sulphuric acid (25cm�), the duration of the experiment (180seconds), the number of attempts per concentration (three) Accuracy and Reliability My results are recorded very accurately: * The stopwatch gave a reading +/- second * The gas syringe recorded to +/- cm� * The burette recorded to +/- 0.5cm� To increase the reliability of my results I repeated the experiment for each concentration three times and I also found the average volume of gas produced for each concentration. Safety * Make sure that all work surfaces are clear before I begin the experiment * Wear safety glasses to prevent any acid entering my eyes * Take care in using the glassware, as it can be sharp when broken If I follow these points it will help keep the experiment safe. ...read more.


I was able to repeat each concentration, to make my results more accurate. In general I had no real anomalous results, as I carried out each experiment three times and worked out the average for each one. I worked with a partner to do this experiment and I think this is why my results are so accurate, as one of us watched the stopwatch (time), while the other recorded the amount of hydrogen gas produced. A gas syringe was used to measure the volume accurately to 0.1 cm� and the magnesium strips were also measured accurately. I used a measuring cylinder to measure the amount of acid accurately to 0.1 cm� and the stopwatch also measured the time accurately to 0.01seconds. I think this made the results I obtained reliable. I think if I was to make my results even more accurate I could increase the duration of the experiment to four or five minutes instead of just three. I could also try and use a gas syringe with a larger scale. Instead of a scale of just 100cm� I could have a scale of about 150cm�. I could also repeat the experiment more times. I would also use a wider range of concentrations. This could make my results more reliable. I am very pleased with my experiment and my results reflected my prediction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

Good report, some solid scientific theory supported by valid data. The data could be adjusted to cover a more appropriate range. The evaluation should also be extended. Generally a good effort, though more scientific theory and vocabulary could be used to support the prediction. Improvements to the investigation write up have been suggested throughout.

Marked by teacher Cornelia Bruce 17/04/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    Rate of Reaction Chemistry Coursework

    4 star(s)

    On the burette make sure that the water is at 50ml, you can change this by allowing water to go out by turning the screw- This has to be done to make sure that we have the correct amount of water in the burette and that when we get the results they will have been started from the same amount.

  2. Peer reviewed

    Rates of Reaction

    5 star(s)

    - so more collisions will be successful and the reaction will be faster. It basically provides a surface for the molecules to attach to, thereby increasing their chances of bumping into each other. So above are the four ways of increasing the rate of reaction.

  1. The aim of the investigation is to examine the kinetics involved in the reactions ...

    As the amount of surface area of the metal exposed varies, the amount of acid reacting to the surface of the metal will also vary, producing unreliable results and inconsistencies. This suggests that granulated zinc and zinc foil are unviable options.

  2. Rate of Reaction Lab Report

    In this lab, the experiments were done only twice so I had to use all the data to find an average. However, if it was performed once more, the first record would have not been a part of the average.

  1. Disappearing cross (aka Rate of reaction).

    Thus the higher the temperature the faster the HCL and Sodium Thiosulphate particles move, the faster the rate of reaction thus a speedier time for the solution to become cloudy. The collision theory states that often when the temperatures of both the liquids are increased be 10oc the reaction time is doubled.

  2. Rates of reaction between Magnesium and HCl.

    I placed a 2cm strip of magnesium ribbon into the conical flask and began to time for 30 seconds. I measured the volume of hydrogen gas that evolved. I recorded the results as follows: Temperature �C Volume of hydrogen produced (cm�)

  1. An investigation into the effect of concentration on the rate of reaction. The disappearing ...

    * I will then draw a black cross on a white piece of paper as to indicate when solution has precipitated. * Then place the conical flask on top of the cross on the piece of paper. * I will then put on some goggles.

  2. How does the activation enthalpy and the rate of the iodine-clock reaction vary with ...

    plotted number of molecules against energy, there will be a peak representing the average energy (which is proportional to temperature) of the molecules but also molecules with either more or less energy on either side (graph on next page). There would then, theoretically, be a finite number of molecules with

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work