• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

The elasticity of copper investigation

Extracts from this document...


The elasticity of copper investigation


The aim of this experiment is to investigate how the extension of a length of wire is affected by the force. I will then find stress and strain after finding these variables, for which I can finally complete my objective which is to find the young’s modulus for the material, in this case copper wire.


I predict that when a wire is subjected to a stretching force, in this case wire being pulled by the force of weight, then the wire likely to be stretched. This does depend on the material as the more flexible the material is the more possibility there is of stretching. I think that the copper wire will have a young’s modulus of about 130 GPa, as the secondary source has worked this out

The stretching force which extends material by equal steps is called Hooke’s law. image00.png


Stretching force, F = spring constant, k * extension, Δx

(N)                                (N 1/m)                 (m)

So the lower the gradient the more flexible the spring will be, vice verser.

This formula can be used to calculate the spring constant, which means that we can work out the force needed to extend the copper wire by 1 metre. So we can predict the amount of extension of the copper wire when adding Newton’s.  

Δx = stretched length – original length

k, can also be referred to as stiffness

The point before X is the limit of proportionality (F α x) it is where the strain is proportional to stress. Point X is called the elastic limit

...read more.


‘The ultimate tensile stress is the measure of strength.’

This is when the material is likely to break so can no longer stretch, but will not be testing this in my experiment.

Strain: the extension per unit length produced when an object is stretched or squashed. This has no unit because it is a ratio.

Strain, ε = Extension, Δx (m)

    Original length, L (m)

For e.g. if there were two wires different lengths, everything else same, the longer wire would be under more strain.

‘It stretches by the same fraction of its original length.’

Young’s modulus: this is the ratio of stress to strain in a material when it is stretched, provided Hooke’s law is obeyed.

Young’s modulus, E = Stress, σ (Pa)

                           Strain, ε



  1. Gather all apparatus in one place safely, then setup the apparatus up like diagram shows.image04.pngimage03.png
  1. Measure the length of wire on the metre rulers, ensuring the wire is taught and straight along the rulers. Measure the diameter along the wire, at least in three different places (as the wire may not be the same everywhere). Place the sellotape pointer on the wire, any where as long as it is against the rule and take own these results.
  1. The wire may have to be long to see a significant change in extension; however the temperature may affect the length. I suggest that a preliminary experiment take place to work this out.  
...read more.


R-squared value: An indicator from 0 to 1 that reveals how closely the estimated values for the trend line correspond to your actual data. A trend line is most reliable when its R-squared value is at 1 or near 1. It is also known as the coefficient of determination.


The uncertainty of the extension is 0.01cm  

(0.01/1.7)*100 = 1.7%

The uncertainty of the length of wire is 0.001m

(0.001/1.760)*100 = 0.05%

The uncertainty of the diameter of the wire is 0.01mm

(0.01/0.31)*100 = 3.1%

To ensure I had a safe experiment I wore safety goggles, also setup the experiment in the centre of the table.

I made sure that the clamp stand was firmly placed on the floor so that it wouldn’t wobble and affect the results taken down.

I tried to keep my eye level in line with the marker measurements to rule out parallax error.

I took many results down to have accurate results and averaged them.

The reason for the line of best fit not going through the origin there may have been due to systematic error. This may because there was friction on the pulley, to remedy this problem grease could be used. Also the ruler was not long enough for the whole wire to be measured so the 2 rulers may be disjointed, so to remedy this problem I would need a longer ruler. Also the taught wire may not be horizontal to the pulley when tied to the clamp so the wire is longer than it can be measured, to solve this problem I used a wooden block, but it wasn’t enough.

The main two measurements that contributed to young’s modulus were the diameter and the extensions as they were used to calculate the stress and strain.  

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Draw stress and strain graphs for the metal copper and the alloy constantan. Calculate ...

    4 star(s)

    So hence it would take more load to create an extension for the alloy. Hence constantan would be stiffer and so this is why its young's modulus would be higher than that of copper. The young's modulus would tell me how stiff a material is when it is stretched.

  2. Marked by a teacher

    Investigate young's modulus behind Constantan and Copper.

    4 star(s)

    The pulley, which I had used, lets the wire slot into place and lets the wire freely move allowing no added pressure onto the wire, so the wire only receives pressure form the weights which are added on. Before attaching any weights, the first thing I would do is beside

  1. Marked by a teacher

    Investigating the young modulus of a wire

    3 star(s)

    Make sure you check that the fixed "G" clamp on the other side of the table is straight towards the pulley. 3. Extend wire from the "G" clamp over the pulley making sure that it is at least 10 cm below the pulley to use for hanging the weights on.

  2. Investigate how mass affects the diameter of an impact crater.

    All recordings will be repeated three times; this will allow me to identify any recording that doesn't follow the usual trend and furthermore calculate an average. Secondly I will need to ensure the experiment is conducted in one lesson, as continuing the experiment after setting up the apparatus over again

  1. Resistance of a Wire Investigation

    This is using 30 SWG wire. Other variables, voltage, thickness, and temperature will be kept constant, although the temperature will rise once current is passing through it, which will cause the atoms in the wire to vibrate, and so obstruct the flow of electrons, so the resistance will increase, creating an error.

  2. Resistance in a Wire Investigation

    I then plotted these results on a graph. To collect the data for my graph I had chosen to take a range of 10 lengths. I had chosen a range of 10 as to plot an accurate graph I will need at least 10 points to mark on the graph.

  1. To plan an experiment to measure the extension in a piece of copper wire, ...

    it stays elastic in this sense. The yield stress of a material is the value of the stress at its elastic limit. * Yield point. The point, just after the elastic limit, at which a distorting force causes a major change in a material.

  2. Youngs Modulus of Elasticity of Nicrome Wire

    The weights will be added in 100-gram increments, and then the marker at the wooden blocks will show if there is any slip, (It will be on top of a scale and if it's moved from there slip has occurred).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work