• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# The formula of magnesium oxide is MgO. This is predicted from knowledge of the Periodic Table and understanding of bonding.

Extracts from this document...

Introduction

Finding the formula of Magnesium Oxide Prediction The formula of magnesium oxide is MgO. This is predicted from knowledge of the Periodic Table and understanding of bonding. Method 1. A strip of magnesium ribbon is cleaned using emery paper. 2. A crucible and its lid are weighed. 3. The magnesium is placed in the crucible and the crucible, its lid and contents re-weighed. 4. The crucible is placed on a pipe-clay triangle on a tripod and heated strongly. The lid is raised slightly from time to time to allow air to enter the crucible. 5. When reaction is finished, heating is stopped and the crucible is allowed to cool. 6. The crucible and its contents are re-weighed. 7. Stages 4 - 6 are repeated until the mass is constant. 8. The whole experiment is repeated but for different masses of magnesium oxide. The Results Mass of Crucible +lid (g) Mass of Crucible + lid + Mg (g) Mass of Crucible + lid + MgO (g) 19.69 19.76 19.85 19.16 19.29 19.37 23.61 23.66 23.69 24.20 24.25 24.29 23.60 23.68 23.73 23.55 23.67 23.70 23.67 23.73 23.77 23.06 23.16 23.22 23.23 23.35 23.43 18.94 19.04 19.11 21.39 21.45 21.49 24.75 24.81 24.85 22.52 22.60 22.65 Analysis To be able to find out the ratio of magnesium to oxygen, I have to calculate the amount of magnesium that was used and the amount of oxygen, and so as a result finding out the amount of magnesium oxide that was produced. ...read more.

Middle

So, the empirical formula of the product, magnesium oxide, is MgO. In addition to this we can also look at the placement of magnesium and oxygen in the periodic table and the way in which they bond during the reaction. When reacting a metal with a non metal, in this case a gas, they undergo ionic bonding. This is when an atom loses electrons and gives them to another atom which needs to gain electrons in order to have a complete outer shell, or in other words to gain the structure of a noble gas. Magnesium is in the second group and has an electron arrangement of 2.8.2 and so needs to give away two electrons in order to have a full outer shell. Oxygen is in the sixth group of the periodic table and has an electron arrangement of 2.6 and so needs to gain 2 electrons to also have a full outer shell. Diagram to show the reaction of magnesium and oxygen. Now we know that when these two elements react they form magnesium oxide (MgO), which is made up of magnesium ions with a double positive charge (Mg2+) and oxide ions with a double negative charge (O2-). Therefore it must be true that 1 atom of magnesium reacts with 1 atom of oxygen, seeing as when they react their outer shells will be complete, because the magnesium atom needs to give away 2 electrons of which the oxygen atom needs to gain. ...read more.

Conclusion

Also this could have been that the reaction had not fully taken place, and so not all the amount of magnesium was allowed to react with the oxygen in the air. This was the main reason why anomalies occurred. To have avoided this happening, after heating, cooling and weighing the contents and the crucible lid. The magnesium oxide could have been heated again, and weighed until the mass was constant. This would have proved that the magnesium had fully reacted with the oxygen in the air. Despite the anomalies that occurred, it became apparent that they did not affect my results or conclusion in any way, as my prediction was supported. To further this investigation I could: * Try to react other metals from group 2 in the Periodic table with oxygen to see whether a pattern occurs in the result. For example, if I were to react Calcium, Ca, with oxygen then I would expect the empirical formula to be CaO. This is based on the idea that Mg reacted with one oxygen atom, and so Ca will react with one oxygen atom also, seeing as Mg and Ca both have similar properties. * Try to react magnesium with other gases in group 6, such as sulphur, to see whether the empirical formula is MgS, on the basis of my knowledge of magnesium reacting with oxygen. Nana Agyeman. 11V Chemistry Investigation Ms. Yates ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Classifying Materials section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Classifying Materials essays

1. ## Chemistry revision notes. Atomic Structure and Bonding, Electrolysis, Acids and Alkalis.

5 star(s)

This includes all acids and metal compounds. Examples: Copper sulphate solution, iron chloride solution, molten sodium chloride, dilute sulphuric acid. Non-electrolytes are covalent substances, e.g. pure water, sugar solution, alcohol, petrol. Electrolysis This is when an electric current passes through an electrolyte. Electrons enter the solution through the negative electrode (cathode), cause a chemical change and leave by the positive electrode (anode).

2. ## The Periodic Table - Revision Notes The numbers in italics are the page numbers ...

5 star(s)

Eg Sodium + Water Hydrogen + Sodium Hydroxide All of the group 1 metals make compounds by reacting with non-metals . The compounds can be identified by doing a flame test and burning them . Sodium compounds make orange flames.

1. ## Chemistry Revision Notes on atomic structure, nuclear power and the periodic table

4 star(s)

Thus, elements gradually change from metallic to metalloid to non-metallic. > The metals between group II and group III are known as the transition metals. These metals have varying valencies and hence are not categorised as part of the grouping arrangements of the periodic table.

2. ## Rate of reaction of hydrochloric acid on magnesium.

The curve just shows that the reaction is almost finished. By this particular graph I am convinced that if I had reacted 0.9M of HCl with Mg I would see a definite curve with the line completely flattened out between the time interval of 0 to 90seconds.

1. ## Periodic table

- The valency of an element is equal to the number of electrons that atom needs to gain, lose or share to fill its outer shell. If electrons are lost the valency it + and if electrons are gained the valency is -.

2. ## The role of mass customization and postponement in global logistics

There are no hard and fast rules. The right postponement model will vary company, by product group, by market. The planning, inventory optimization and decision support systems help companies set the right postponement levels and targets, and make accurate service and delivery commitments.

1. ## Relationship between mass of MgO and its formula

So from his information we now know if this composition changes it is a different substance. As you can see below here is a visual representation of the of constant composition as the composition is always the same no matter how many atoms there are.

2. ## To conjecture the structure and bonding of eight unknown solids by analysis of experimentally ...

only for those that were soluble) for use in conductivity testing (Section B) SAFETY2: * Avoid unprotected contact with either cyclohexane or substance E * Avoid emptying contents of beakers containing solids into sink * DO NOT pour solution of substance E into sink RESULTS2: A Table to Show Solubility in a Non-Polar Solvent: Cyclohexane (C6H12)

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to