• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Iodide - Persulphate Reaction: Determining the Effect of Concentration on Reaction Rate

Extracts from this document...

Introduction

The Iodide - Persulphate Reaction: Determining the Effect of Concentration on Reaction Rate Name: April Yue Date: February 10, 2004 Student ID: 20131652 Section: 006 T.A. : Mary Diep April Yue (20131652) CHEM 123L Feb. 10, 2004 Experiment 3: The Iodide - Persulphate Reaction: The Effect of Concentration on Reaction Rate Introduction: In this experiment, we utilized the ability for the iodide ion to become oxidized by the persulphate ion. Our general reaction can be described as: (NH4)2S2O8 + 2KI --> I2 + (NH4)2SO4 + K2SO4 (1a) However, we know that in an aqueous solution, all of these compounds except iodine will dissociate into their ionic components. Thus we can rewrite the equation in a more convenient manner: S2O82- + 2I- --> I2 + 2SO42- (1b) It is important however to note that the NH4 and K ions are still in the solution, they are just unreactive. In order to measure the rate of the reaction, the conventional method would be to measure the species in question at certain times. However, this would be inconvenient, especially for a three hour laboratory period. Since the iodide ion can be oxidized by the persulphate ion, we can use sodium thiosulphate to be an indicator of the presence of iodine in the solution. For this experiment, we can simply calculate the rate of the reaction by timing the amount of iodine being produced in several runs. ...read more.

Middle

log [S2O8-2] m= rise = -2.678 - (-2.055) = -0.623 = 1 run -2.041 - (-1.439) -0.602 slope 2: -log ?t vs. log [I-] n= rise = -2.635 - (-2.055) = -0.58 = 1 run -1.74 - (-1.138) -0.602 3. Sample Calculations: Rate of Reaction for run #1: Rate = -?S2O8-2 / ?t = -9.09 x 10-4 M / 113.5 s = 8.01 x 10-6 M s-1 Rate constant (k) for run #1: k = Rate / ( [S2O8-2]m [I-]n ) k = 8.01 x 10-6 M s-1 / {(3.64 x 10-2 M)1(7.27 x 10-2 M)1} k = 3.03 x 10-3 s-1 Ionic Strength (�) for run #1: � = 0.5 ? CiZi2 � = 0.5{([NH4]x(+1)2) + ([S2O8]x(-2)2) + ([K]x(+1)2) + ([I]x(-1)2) + ([Na]x(+1)2) + ([S2O3]x(-2)2)} � = 0.187 mol L-1 Table 2 - Calculations Summary Table Run # [S2O8-2] (M) [I-] (M) [S2O3-2] (M) -?S2O8-2 (M) ?t (s) Rate (M s-1) Rate Constant, k (s-1) Ionic Strength (M) 1 3.64 x 10-2 7.27 x 10-2 1.82 x 10-3 -9.09 x 10-4 114 -8.01 x 10-6 3.03 x 10-3 0.187 2 1.82 x 10-2 7.27 x 10-2 1.82 x 10-3 -9.09 x 10-4 218 -4.16 x 10-6 3.15 x 10-3 0.187 3 9.09 x 10-3 7.27 x 10-2 1.82 x 10-3 -9.09 x 10-4 476 -1.91 x 10-6 2.89 x 10-3 0.187 4 3.64 x 10-2 3.64 x 10-2 1.82 x 10-3 -9.09 x 10-4 228 -3.98 x 10-6 3.01 x 10-3 0.187 ...read more.

Conclusion

Since the ionic strength has also decreased, it has some effect on the resulting rate constant and therefore skews the results a bit. The rest of the results seem to agree with the logical way the experiment should have occurred. For example, the runs with the longer elapsed times had the slower reaction rates and vice versa with the runs with the shorter elapsed times. This makes sense due to the linear relationship between reaction rate and time. Some sources of error in this experiment may have been a mistake in mixing certain reactants, or inaccuracy with measuring volume of the solutions. It was more likely that there was inaccurate measuring of the solutions because it was quite difficult to always use the Mohr and transfer pipettes precisely. Conclusions: The purpose of this experiment was to determine how concentration of a certain reactant in a reaction can affect the rate of the entire reaction. The experiment was overall a success because we could see that when we varied the concentrations of certain compounds, the reaction rate was affected accordingly. Overall we know that the rate of the reaction is linearly proportional to the concentration of your reactant. However, if your reaction can exist in equilibrium and you increase the concentration of a product, the reaction will favour in the left direction, and if you are measuring rate of product formation, this will result in a decrease in reaction rate. Reference(s): Chemistry Department, First Year Chemistry: Chem 123L Laboratory Manual. University of Waterloo: 2004 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Peer reviewed

    Rates of Reaction

    5 star(s)

    This results in fewer collisions and therefore means the reaction is slower. When we use a smaller solid reactant (by breaking them down into pieces) you are increasing the surface area and that makes the reaction occur faster because there is more surface to collide on.

  2. Rates of Reaction - The Iodine Clock

    The best range (and therefore chemical mixture) is one that shows quite a large variation in time for a small change in the concentration of limiting reagent (independent variable), the times for the reaction to reach the end-point should lie between approximately thirty seconds (for the fastest)

  1. An Investigation into the effect of concetration on the Rate of Reaction Between Potassium ...

    A stop clock was taken and as the two solutions were poured in to the beaker the stop clock was started. A person observed above the beaker until the two solutions had reacted and the cross had disappeared and then the stop clock was stopped.

  2. Investigation into the Effect Concentration has on Rate of Reaction.

    I then carried out the experiment with 50 ml of acid, and 5g of marble chips. Again, the amount of product was off the scale-it was the same when I carried out the experiment with 50 ml of acid and 2.5g of marble chips.

  1. Investigate the effect of concentration on the rate of reaction.

    and the energy of the reactants Energy of reactants - as the reactants change into the products, they have to climb to a higher energy level. To do this, they must be supplied with energy: this is an endothermic reaction Activation energy During any chemical reaction, the particles that are reacting must first collide with each other.

  2. Change in reaction times due to alcohol consumption.

    Socially, drinking is dangerous in that emotions are more freely expressed when one is intoxicated. This is because the part of the brain that allows us to control our actions and behavior is relaxed. There is a loss of self-restraint.

  1. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    is called the rate equation for the reaction, and the constant k is called the rate constant. The value of k varies with temperature, so it must always be stated at what temperature the measurements were made when the rate, or the rate constant, is given of a reaction.

  2. RATE OF REACTION

    are left in longer than others then osmosis will have had a longer time in which to occur, depending on the concentration of the solutions that the samples were left in. This may mean that the amount of water entering or leaving the cells will be greater than of the other samples.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work