• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# The Pendulum

Extracts from this document...

Introduction

ThePendulumCoursework

Planning Section

Aim: The aim of this experiment is to find out if a certain variable effects the period of a pendulum. The variable we will be testing in this project is the length of the string.

Prediction: I predict that the longer the piece of string, the longer it will take the pendulum to complete one period. I also predict as the length of the string goes up by 10cm, the period will increase by roughly 0.15 seconds.

Apparatus: -Piece of string (longer than 95cm)

To attach and swing the weight ball off.

-Ruler

To measure the piece of string.

-Protractor

To measure the angle between the string and the floor so

It is the same every time.

-Stop watch

To measure how long the period is

-Pencil/Pen

To record our results

-Weight ball (40g)

To attach and hang on the end of the string to weigh it

Down and to make it into a pendulum.

-Clamp

To attach the pendulum 2 the table so it has room to

Swing above the floor.

-Clamp attachment fitting

To attach the string to the clamp.

Method:

1. Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in fives i.e. 5, 10, 15 etc…

Middle

#### Preliminary Trial

Length (cm)

##### Trial 1

5

0.91

10

0.95

15

1.07

20

1.18

25

1.20

30

1.22

35

1.42

40

1.47

45

1.58

50

1.45

These results aren’t very accurate and don’t really follow a certain pattern. Also, I don’t think they cover a big enough range so we don’t really get a chance to see how length effects the pendulum later on when the string is longer. Therefore, We are going to change the difference between each length from 5cm –10cm.

This is the new Method:

1) Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in tens i.e. 5, 15, 25 etc…

2) Then we have to draw up a table o record all f our results.

3) Next we have to collect all our apparatus.

4) Firstly, we will measure a piece of string to the length required, plus a bit for excess to tie around the weight ball etc…

5) We then will set up our clamp and attach the string to the clamp attachment and in turn, attach the weight ball to the string.

6) After all is set up, we will need to wind up the string around the clamp to the lowest measurement ready to begin the experiment. (we will measure it with a ruler)

7)

Conclusion

This shows good and accurate timings, which is very good n the fact we’re trying to compare the length of string and the how it affects the time it takes the pendulum to complete one period.

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right.

t² = (4π²/g)L.

39.5/39.5=1

1 times 5 = 5

Therefore should be at point 5 (0.5) on the graph.

Therefore our result is inaccurate.

However, it does relate to my background research because it said that length would be the only variable able to change the length of the period. Also that the longer the string the longer it would take to complete a period. This means it does link closely to the background research, just not extremely accurately. The main theory does.

###### Conclusion

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right. In my prediction I said that it goes up by roughly 0.15 in every 10cm but I think its now more closer to 0.1 seconds in every 10 cm.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1. ## Additional Science - What affects the period of a pendulum?

3 star(s)

think the results are fairly reliable, even though there were a few outliers. From the Spearman's Rank calculation for the first preliminary, it shows that there is correlation between the independent and the control variable, as well as suggesting that the method used to test is the correct method.

2. ## Investigation into the range of a ski jump

The range will be recorded from approximately 0cm-150cm H2 will be measured before beginning the experiment, as it is a constant. Reliability: Unreliable results are caused by random error. When a single recording is made the result may not be the true result, it may be close, but due to

1. ## science pendulum experiment

* Measuring 10 swings instead of 1, to reduce the risk of human error. Background Information A pendulum is a device which consists of an object (pendulum bob) suspended from a fixed point that swings back and forth, with certain forces acting on it.

2. ## Investigating the amazingness of theBouncing Ball!

The time between the bounces is used to work out the height reached by the ball between each bounce, using the equation height = -0.5 x -9.81 x(t/2)2, however this value is useless when plotted so using the decay constant: H = Hoe-^t the graph of Ln H/Ho against bounce

1. ## An Investigation to discover whether the string length of a pendulum affects the pendulum ...

I will draw an angle of 20 degrees on a piece of paper using a protractor. I will use this to make sure that when I hold back the string, before I release the pendulum, I am bringing it back to 20 degrees.

2. ## An Experiment Using a Pendulum to Find the Acceleration due to Gravity.

> Either a stand or clips from the ceiling or table. > A stopwatch > A protractor to measure the drop angle. > A meter ruler or tape measure to measure the length of the pendulum. Fair test: There are three variables that could affect the result of my experiment.

1. ## What affects the time period of a pendulum.

These two formulae then give us the formula for a period, this is Where L = length of string from pivot to bob g = acceleration due to gravity T = time of period. This tells me that there are only two variables, that I have direct control over, that can effect the period of the bob.

2. ## Designing a children's slide, making it exciting for the children whilst exercising safety.

The following formula( Newton's Second Law of Motion ) is used to find the new acceleration: ma = - ?mg again mass does not affect acceleration as show : ma = - ?mg a = - ?g as I have established, ? is 0.35 and gravity (g) is 9.8 ms-2 Assumptions: To set up this mathematical model of the

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to