• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Pendulum

Extracts from this document...

Introduction

ThePendulumCoursework

Planning Section

Aim: The aim of this experiment is to find out if a certain variable effects the period of a pendulum. The variable we will be testing in this project is the length of the string.

Prediction: I predict that the longer the piece of string, the longer it will take the pendulum to complete one period. I also predict as the length of the string goes up by 10cm, the period will increase by roughly 0.15 seconds.

Apparatus: -Piece of string (longer than 95cm)

             To attach and swing the weight ball off.

  -Ruler

                To measure the piece of string.

 -Protractor

          To measure the angle between the string and the floor so

                         It is the same every time.            

                         -Stop watch

To measure how long the period is

     -Pencil/Pen

To record our results

                         -Weight ball (40g)

To attach and hang on the end of the string to weigh it

                          Down and to make it into a pendulum.

                         -Clamp

To attach the pendulum 2 the table so it has room to

                          Swing above the floor.

                         -Clamp attachment fitting

To attach the string to the clamp.

Method:

  1. Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in fives i.e. 5, 10, 15 etc…                                                                

...read more.

Middle

image01.png

Preliminary Trial

Length (cm)

Trial 1

5

0.91

10

0.95

15

1.07

20

1.18

25

1.20

30

1.22

35

1.42

40

1.47

45

1.58

50

1.45

These results aren’t very accurate and don’t really follow a certain pattern. Also, I don’t think they cover a big enough range so we don’t really get a chance to see how length effects the pendulum later on when the string is longer. Therefore, We are going to change the difference between each length from 5cm –10cm.

This is the new Method:

1) Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in tens i.e. 5, 15, 25 etc…                                                            

2) Then we have to draw up a table o record all f our results.

3) Next we have to collect all our apparatus.

4) Firstly, we will measure a piece of string to the length required, plus a bit for excess to tie around the weight ball etc…

5) We then will set up our clamp and attach the string to the clamp attachment and in turn, attach the weight ball to the string.

6) After all is set up, we will need to wind up the string around the clamp to the lowest measurement ready to begin the experiment. (we will measure it with a ruler)

7)

...read more.

Conclusion

This shows good and accurate timings, which is very good n the fact we’re trying to compare the length of string and the how it affects the time it takes the pendulum to complete one period.

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right.

t² = (4π²/g)L.

39.5/39.5=1

1 times 5 = 5

Therefore should be at point 5 (0.5) on the graph.

Therefore our result is inaccurate.

However, it does relate to my background research because it said that length would be the only variable able to change the length of the period. Also that the longer the string the longer it would take to complete a period. This means it does link closely to the background research, just not extremely accurately. The main theory does.

Conclusion

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right. In my prediction I said that it goes up by roughly 0.15 in every 10cm but I think its now more closer to 0.1 seconds in every 10 cm.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Additional Science - What affects the period of a pendulum?

    3 star(s)

    Regarding the reliability of results, I have tried to make to as accurate as possible by using elastic bands to fix the ruler to the retort so that measuring the length of the string was easier. However, there are limits to how accurate I can be with this experiment as there is human error to consider.

  2. Investigation into the range of a ski jump

    The height of the table is 85cm (h2) Values of h1 from 5-45cm (in intervals of 5cm) will be used Using the formula R�=h1 x 4h2 h1 h2 4h2 R� (h1 x 4h2) R (VR�) 5 85 340 1700 41.2 10 85 340 3400 58.3 15 85 340 5100 71.4 20 85 340 6800 82.5 25 85 340

  1. What affects the time period of a pendulum.

    We then stopped the pendulum swinging and recorded the times. 7. We repeated the experiment with the same length 3 times 8. We then repeated steps 1-6 for string lengths 10cm, 20cm 30cm, 40cm, 50cm Diagram Errors in Measuring/Judgment: In many cases we found that when we repeated the experiments, we found that the time or the amplitude was different.

  2. The Flywheel as an Alternative Energy Storage Device for Electric Vehicles (EV): Problems Associated ...

    shows P resolved into two equal components F. The angle between these two force vectors is and so we have Substituting in equation 2 we have The stress produced by this force is In terms of angular velocity (v = r)

  1. Investigating the amazingness of theBouncing Ball!

    From my graph it's been found that y=2.5 x - 0.24 18 So ?= 2.5 = 0.14(2dp) 18 Though the coefficient of restitution and the deacy constant will be achieved from analysing the same bit of data they will not be dependant on each other ie.

  2. In this Coursework, we were given the task of investigating some factors which affect ...

    Once the string is adjusted to the fixed length, the cork is tightened and the string is held firmly to maintain the required length of string. 2- The bob is then elevated to an angle of 10 degrees. This can be measured by means of the protractor which is attached to the cork.

  1. science pendulum experiment

    Therefore the factor I have decided to test is the length of string. Fair Test In order for my experiment to be worthwhile, it needs to be made a fair test. I will ensure this by: * Selecting a constant angle to swing the pendulum from.

  2. What effects the period of a pendulum?

    than its opposing force and therefore the pendulum eventually slows down to a stop. Prediction For this experiment I predict that the length of the pendulum will have a great affect on the length of time for a swing, in the way that the longer the pendulum is the longer the time for one swing.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work