• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Reaction.

Extracts from this document...

Introduction

The Reaction The word equation for this reaction is: Copper Sulphate + Iron --> Iron Sulphate + Copper The balanced chemical equation for this reaction is: CuSO4(aq) + Fe(s) --> FeSO4(aq) + Cu(s) This reaction falls under several categories of chemical reaction, namely: * Displacement reaction * Exothermic reaction * Redox reaction I will now explain each of these reactions in detail. Displacement Reaction In a displacement reaction, the more reactive substance in the reaction takes the place of the less reactive substance. As can be seen from the equations written above, the iron takes the place of the copper in the copper sulphate solution. The reaction can therefore be classed as a displacement reaction. Redox Reaction 'Redox' stands for REDuction / OXidation, meaning that in the reaction, there is one substance which gains oxygen and another which loses it. Reduction and oxidation always happen together - if one thing is reduced, another is oxidised. By looking at the equations, it is easy to see that iron has been oxidised - gained oxygen, while copper has been reduced - lost oxygen, by losing the sulphate, SO4, to the iron. However, it is also possible to tell which substance has been reduced and which has been oxidised by looking at how the charges of the substances change in the equation. ...read more.

Middle

I could now proceed with my investigation. Apparatus Anhydrous copper (II) sulphate - with which to make the solution for the experiment Distilled water - to dissolve the copper sulphate to make solution Fine iron filings - to put into the solution to carry out investigation Electronic weighing scales - in order to weigh out iron and copper sulphate quantities fairly accurately Boiling Tubes - in which to place solution and iron Measuring cylinders - to measure out quantities of distilled water and copper sulphate solution Thermometer - to record highest temperatures reached because of the exothermic reaction Stirring rod - to stir the copper sulphate while making solution Bunsen burner - to help the copper sulphate dissolve into the distilled water Hypothesis I predict that as the concentration of the copper sulphate solution gets weaker, the amount of energy released will decrease proportionately, i.e., if there is a change of 10 degrees Celsius when the iron is in a 0.8 M solution, there will be a change of 5 degrees Celsius in a 0.4 solution. However, if the concentration of solution was more than 1 mole, there should be no additional temperature rise; the ratio of 1M of solution to 1M of iron would produce the maximum temperature rise. ...read more.

Conclusion

Therefore, it is likely that most of the iron did react. However, during this reaction, a layer of copper will have formed over each iron filing. This would mean that the inside of each grain of iron would not have been able to react with the copper sulphate. Therefore, in effect, less than one mole of iron was added to the copper sulphate because not all of it was able to react. This resulted in lower temperature increase than expected. It would have been very hard to solve this problem as I would have had to work out how much a mole of iron was, taking into account the size of each iron filing as this would determine the size of the copper layer surrounding it. The best I could have done was to use even finer iron filings; however, I would still have had the same problem although to a lesser extent. 3) As explained above, the iron filings had a very large surface area because of their minute size. Since iron is a fairly reactive metal, it would have reacted with oxygen while in storage, resulting in a layer of iron oxide covering it. Therefore, when I weighed out a mole of iron for my experiment, I was weighing out both iron and iron oxide. This problem could have been reduced by storing the iron very carefully so that it should come into contact with the least amount of oxygen possible. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. To organise 5 given metals into a reactivity series using 0.2 M Copper (II) ...

    4 x10-3 moles of each metal is needed to react with 4 x10-3 moles of copper sulphate solution. We can then find how many grams of each metal we need to react with 20cm3 of Copper Sulphate Solution. Mass in g = moles of solid x mass of 1 mole (RAM)

  2. Investigating the Effects of Increasing Copper Sulphate Solution Concentrations on the Germination of Cress ...

    I will then prepare stands for the seeds to germinate on. Each stand will be prepared as follows: Method For Preparing Seed Stands. Take 168 plant pots of diameter 20cm which have been well cleaned out with hot water beforehand.

  1. Rates of Reaction

    As a reactant concentration increases i.e. hydrochloric acid, the frequency of collision increases also. The diagram below shows a clear view of how concentration can affect the rate of reaction: A) In dilute acids such as the one in flask A, there are few acid particles; this means that there

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    (aq) and Iron (II) Ammonium Sulphate (aq) is in determining the concentration of Iron (II) Ammonium Sulphate (aq). Background Theory The reaction that will occur in this experiment is a redox reaction, which involves electron transfer. It can be split into two half reactions, one producing electrons and the other accepting them (4).

  1. Investigation to determine the lowest concentration of copper (II) sulphate solution that brings full ...

    Label each test tube through from A to F. Place the test tubes into a test tube rack in alphabetical order. 3. Weigh each test tube using the electronic scales, and record the weights in the table provided. 4.

  2. making copper

    If the liquid goes green add drops of dilute sulphuric acid until it goes blue. 9. Stop heating. Allow the solution to cool. When the solution is cool, move the basin to a warm place. This will complete the crystallization of the copper sulphate. This may take a few days!

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work