• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Time-Period of a Simple Pendulum.

Extracts from this document...

Introduction

The time-period of a simple pendulum : 1. Depends on Length of pendulum, L 2. Depends on Acceleration due to gravity, g 3. Does not depend on the mass of the bob 4. Does not depend on the amplitude of oscillations * The time-period of a simple pendulum is directly propotional to the square root of its length. Thus, wen de length of pendulum is made 4 times, then de period will become 2 times, i.e., it'll get doubled. And if the length of a simple pendulum is made one-fourth. Then it time-period will become half, i.e., it will get halved. Thus, as de length of de pendulum is increased, its time-period also increases. ...read more.

Middle

Knowing the time for 20 oscillations, the time for 1 oscillation can be found in each case. In one such experiment, the following observations were obtained (the length of pendulum being kept constant at 1 metre ) : Mass of the bob Time for 20 oscillations Time for 1 oscillation (Time - period, T) 5 g 40.2 s 2.01 s 10 g 40.2 s 2.01 s 15 g 40.2 s 2.01 s 20 g 40.2 s 2.01 s 25 g 40.2 s 2.01 s From the above table we find that even if we use bobs of different masses like 5g, 10 g, 15g, 20g, 24g, etc., the taken for 1 oscillation of pendulum does not change. ...read more.

Conclusion

From this we conclude that as the length of the simple pendulum is increased, its period also increases. It is, however, very important to note that the increase in time period is not proportional to increase in length. This because when we increase the length 4 times, then the increase in time period is only two times and not 4 times as required in the proportional relationship. * Gulf Sahodya Examination' 1992 * Gulf Sahodya Examination' 1993 * Gulf Sahodya Examination' 1994 * Gulf Sahodya Examination' 1995 * Gulf Sahodya Examination'1996 * Gulf Sahodya Examination' 1997 * Gulf Sahodya Examination' 1999 * Gulf Sahodya Examination' 2000 * Gulf Sahodya Examination' 2001 * * * * * I would like to express my gratitude to my Sir MR.Thomas and my friends for helping me finish my project exactly and at the earliest. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    The Top-pan balance will measure the mass of the plasticine to be added. Once I have recorded my results, I will use the formula (as stated above) to work out the time of one oscillation of the pendulum. I will then plot a graph of mass against time to help

  2. Peer reviewed

    length of a simple pendulum affects the time

    4 star(s)

    This means there is a resultant force on the bob to the right. If the bob is moving to the right the force makes it accelerate and the speed increases as it moves towards the centre. If the bob is moving to the left the force decelerates it and it slows down.

  1. Peer reviewed

    investigation of a simple pendulum

    3 star(s)

    Variables: Independent: > Length of the string Dependent: > Time taken for a 10 complete oscillation Constant: > mass of metal bob at the end of string > Number of oscillations Fair test: to make it a fair test (to ensure that physical conditions are fair, and the results are accurate)

  2. Determining the acceleration due to gravity by using simple pendulum.

    Enclosing the apparatus in a vacuum box will negate all air turbulence effects. Releasing the pendulum is then a problem as the easiest and accurate method found so far is to displace the bob and tie it up with a thread.

  1. Period of Oscillation of a Simple Pendulum

    Graphs will be drawn to show any patterns that emerge. There are no safety precautions that need to be taken into account in this experiment, only common sense should be observed. Results In the results section, I shall present information in the form of tables and graphs (e.g.

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    The following are variables which need to be kept constant. * Amplitude of displacement As long as the amplitude of displacement is 15� or under, the period calculated on the basis of the equation I have used above, is accurate to within 1/2 %.

  1. FACTORS AFECTING SIMPLE PENDULUM`S PERIOD

    Mass (kg) Time for 10 oscillations (s) Time for one oscillation(s) Period from the equation (s) Difference 0.05 14.78 1.478 1.488 0.01 0.1 14.92 1.495 1.488 0.007 0.15 14.84 1.484 1.488 0.004 0.20 14.78 1.461 1.488 0.027 0.25 14.79 1.459 1.488 0.029 0.30 14.90 1.490 1.488 0.002 Average: 14.84 1.478

  2. Physics Coursework: To investigate the Oscillations of a mass on a spring

    It doesn't matter how much you pull the mass down, because previously, I have proven that the amplitude does not affect the time of oscillations, but it is advised to pull it down just a little, so it is much easier to count the oscillations 4.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work