• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Time-Period of a Simple Pendulum.

Extracts from this document...

Introduction

The time-period of a simple pendulum : 1. Depends on Length of pendulum, L 2. Depends on Acceleration due to gravity, g 3. Does not depend on the mass of the bob 4. Does not depend on the amplitude of oscillations * The time-period of a simple pendulum is directly propotional to the square root of its length. Thus, wen de length of pendulum is made 4 times, then de period will become 2 times, i.e., it'll get doubled. And if the length of a simple pendulum is made one-fourth. Then it time-period will become half, i.e., it will get halved. Thus, as de length of de pendulum is increased, its time-period also increases. ...read more.

Middle

Knowing the time for 20 oscillations, the time for 1 oscillation can be found in each case. In one such experiment, the following observations were obtained (the length of pendulum being kept constant at 1 metre ) : Mass of the bob Time for 20 oscillations Time for 1 oscillation (Time - period, T) 5 g 40.2 s 2.01 s 10 g 40.2 s 2.01 s 15 g 40.2 s 2.01 s 20 g 40.2 s 2.01 s 25 g 40.2 s 2.01 s From the above table we find that even if we use bobs of different masses like 5g, 10 g, 15g, 20g, 24g, etc., the taken for 1 oscillation of pendulum does not change. ...read more.

Conclusion

From this we conclude that as the length of the simple pendulum is increased, its period also increases. It is, however, very important to note that the increase in time period is not proportional to increase in length. This because when we increase the length 4 times, then the increase in time period is only two times and not 4 times as required in the proportional relationship. * Gulf Sahodya Examination' 1992 * Gulf Sahodya Examination' 1993 * Gulf Sahodya Examination' 1994 * Gulf Sahodya Examination' 1995 * Gulf Sahodya Examination'1996 * Gulf Sahodya Examination' 1997 * Gulf Sahodya Examination' 1999 * Gulf Sahodya Examination' 2000 * Gulf Sahodya Examination' 2001 * * * * * I would like to express my gratitude to my Sir MR.Thomas and my friends for helping me finish my project exactly and at the earliest. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    The Top-pan balance will measure the mass of the plasticine to be added. Once I have recorded my results, I will use the formula (as stated above) to work out the time of one oscillation of the pendulum. I will then plot a graph of mass against time to help

  2. Peer reviewed

    length of a simple pendulum affects the time

    4 star(s)

    This means there is a resultant force on the bob to the right. If the bob is moving to the right the force makes it accelerate and the speed increases as it moves towards the centre. If the bob is moving to the left the force decelerates it and it slows down.

  1. Period of Oscillation of a Simple Pendulum

    scatter-graphs, bar charts etc). Hopefully, I shall be able to explain or give reasons for the results that I achieve and why the pendulum acts in this way. I will also observe any patterns and explain why they are occuring.

  2. Determining the acceleration due to gravity by using simple pendulum.

    The stopwatch systematic uncertainty should be listed by the manufacturer of the instrument, whereas the eye-hand uncertainty has to be estimated by myself, e.g. by measurement against a known time interval. The statistical uncertainty on T comes from the fact that my eye-hand reaction time varies from one trial to the next; it fluctuates (around the systematic value).

  1. To investigate the time taken for the pendulum to oscillate for a time period.

    This proves that the equation T = 2? ?(l /g) is correct at determining results for the time period of one oscillation for a pendulum in simple harmonic motion. This is because all the relevant and depending forces are used in the formula whereas the independent ones such as mass and amplitude are left out.

  2. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    The other factor which could have lead to me getting unreliable results could be the fact that I had to start the stop clock simultaneously when I released the pendulum. But I found hard to start the stop clock and release the pendulum at the same time as well.

  1. The determination of the acceleration due to gravity at the surface of the earth, ...

    for the pendulum to complete a set number of oscillations, so that I can calculate the period. By doing this for a range of lengths I will be able to relate my results to the above equation, by finding the gradient of the line of period´┐Ż plotted against length of pendulum.

  2. FACTORS AFECTING SIMPLE PENDULUM`S PERIOD

    How to draw error box: to draw error box I first need to see what the range off errors in my data for the variables in the x-axis and y axis are. And in doing so we need to find the sensitivity of our instruments and the errors involved at human action then draw the error boxes.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work