• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Time-Period of a Simple Pendulum.

Extracts from this document...

Introduction

The time-period of a simple pendulum : 1. Depends on Length of pendulum, L 2. Depends on Acceleration due to gravity, g 3. Does not depend on the mass of the bob 4. Does not depend on the amplitude of oscillations * The time-period of a simple pendulum is directly propotional to the square root of its length. Thus, wen de length of pendulum is made 4 times, then de period will become 2 times, i.e., it'll get doubled. And if the length of a simple pendulum is made one-fourth. Then it time-period will become half, i.e., it will get halved. Thus, as de length of de pendulum is increased, its time-period also increases. ...read more.

Middle

Knowing the time for 20 oscillations, the time for 1 oscillation can be found in each case. In one such experiment, the following observations were obtained (the length of pendulum being kept constant at 1 metre ) : Mass of the bob Time for 20 oscillations Time for 1 oscillation (Time - period, T) 5 g 40.2 s 2.01 s 10 g 40.2 s 2.01 s 15 g 40.2 s 2.01 s 20 g 40.2 s 2.01 s 25 g 40.2 s 2.01 s From the above table we find that even if we use bobs of different masses like 5g, 10 g, 15g, 20g, 24g, etc., the taken for 1 oscillation of pendulum does not change. ...read more.

Conclusion

From this we conclude that as the length of the simple pendulum is increased, its period also increases. It is, however, very important to note that the increase in time period is not proportional to increase in length. This because when we increase the length 4 times, then the increase in time period is only two times and not 4 times as required in the proportional relationship. * Gulf Sahodya Examination' 1992 * Gulf Sahodya Examination' 1993 * Gulf Sahodya Examination' 1994 * Gulf Sahodya Examination' 1995 * Gulf Sahodya Examination'1996 * Gulf Sahodya Examination' 1997 * Gulf Sahodya Examination' 1999 * Gulf Sahodya Examination' 2000 * Gulf Sahodya Examination' 2001 * * * * * I would like to express my gratitude to my Sir MR.Thomas and my friends for helping me finish my project exactly and at the earliest. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    Instead of doing this, I will measure the time of 30 oscillations, and then use this figure to work out an average of the time taken for one oscillation. To make this easier to understand I can write it as follows Where T is the time for one oscillation, A

  2. Peer reviewed

    length of a simple pendulum affects the time

    4 star(s)

    The blue pendulum has the most gravitational potential energy at the top of the swing because it is higher. This means the kinetic energy and hence speed through the centre will also be greater than for the red pendulum. From previous experiments I know that for trolleys running freely down

  1. Determining the acceleration due to gravity by using simple pendulum.

    Within the accuracy of the method used, and for the range of values investigated, it is clear that the time for a complete swing of the pendulum is proportional to the square root of the length. IMPROVEMENTS. The procedure used was simple and straightforward and no difficulties were encountered.

  2. Period of Oscillation of a Simple Pendulum

    As stated before, I shall draw scatter-graphs etc and draw up tables to see if any patterns emerge. * Angle of Release This experiment will be done in a similar style to the others. Ten oscillations will be timed and as before the answer will be worked out by dividing by ten.

  1. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    The other factor which could have lead to me getting unreliable results could be the fact that I had to start the stop clock simultaneously when I released the pendulum. But I found hard to start the stop clock and release the pendulum at the same time as well.

  2. To investigate the time taken for the pendulum to oscillate for a time period.

    This allows us to get a good range and the intervals are close enough together to give an obvious trend. Problems: As we did the experiment, unfortunately things didn't go as they were planned. The main problem was that we were unable to securely hold the pendulum at the intended

  1. The determination of the acceleration due to gravity at the surface of the earth, ...

    This is my justification for the design of my experiment. Fair Test In order to ensure that a fair test was being carried out I needed to identify what aspects of the experiment needed to be fixed to make it a fair test.

  2. Physics Coursework: To investigate the Oscillations of a mass on a spring

    This is a typical graph of an inversely proportional graph, where as the mass increases, the frequency gets smaller and smaller. But if we plot this points onto number of springs against the 1 / frequency, then the graph should come out as a direct proportional straight linear line graph,

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work