# The topic of which I have been studying is energy transfers, how energy can not be destroyed but only changed into another such as potential into kinetic, this the energy transfer which shall take place in my investigation.

Extracts from this document...

Introduction

Joshanna Ford

Science Course Work

Introduction

The topic of which I have been studying is energy transfers, how energy can not be destroyed but only changed into another such as potential into kinetic, this the energy transfer which shall take place in my investigation. The aim of this investigation it to find out how the height of the ramp affects the speed the ball travels.

Plan

I am going to investigate how the height of a ramp affects the speed of which a ball travels. To make sure my test is correct I will need to keep several things the same these are:

The distance the ball has to role, to get the speed.

The length of the ramp.

The ball, so that is the same mass and the surface so that the texture of it will be the same.

The thing I will be changing is the height of the ramp.

To do this I will use a ramp, a bouncy ball, a meter ruler, a stop watch and a clamp. All these will be provide by school. I will start by raising the ramp at 0.20 meters intervals using the clamp, starting at 0.20 meters and finishing at 1 meter. First I will mark a meter on the bench from where I will hold the ramp. After I have measured the 0.

Middle

Formula for potential energy

PE = m x g x h

Potential energy = Mass of ball (kg) x Gravity (10m/s/s) x Height of ramp

Formula for kinetic energy

KE = ½ x m x v2

Kinetic energy = ½ x Mass of ball x Velocity2

So because of a low of conservation of energy with means energy can not be destroyed only changed. In this case it is potential to kinetic.

So

PE lost = KE gained

m x g x h = ½ x m x v2

But because there is m on both sides of the equation they cancel each other out.

g x h = ½ v2

2 x g x h = v2

g represents the gravitational pull as we are on earth this is 10 m/s/s

2 x 10 x h = v2

20 x h = v2

So I just want to find velocity not the velocity2

√20 x h = v

Remember the height will change according to the experiment.

Method

When I did the actual experiment I made several alterations to what I wrote in my plan. First instead of doing the experiment on a bench we did it on the floor because we found the bench to be too small a work area.

Conclusion

I could provide additional evidence to extend my enquiry by testing a large variety of heights and testing each height more times to make my results more accurate. Also I could extend the meter which the ball travelled to a longer distance giving me a variety. I could investigate other factors of this experiment by changing the mass of the ball or the texture of the ball but using the same equipment as I have in testing the height. I could also change the texture of the ramp or/and of the worktop to tell me how friction affects the ball when travelling.

Conclusion

My conclusion is that if the height of a ramp is increased the speed of a ball travelling down the ramp would be increased too making the ball travel faster across the 1.00 meter mark, due to the large amount of potential energy transferring into kinetic energy.

So the higher the ramp the more potential energy which will turn into more kinetic energy so the ball will travel faster.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

## Found what you're looking for?

- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month