• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Thermal insulators.

Extracts from this document...

Introduction

Zeadon Jamil

Thermal insulators

Aim

To investigate different materials for the most effective thermal insulator for a house.

Introduction

Heat transfer is the gain and loss of energy.

There are three ways in which thermal energy can be transferred:

  • Conduction
  • Convection
  • Radiation

Conduction – this is when energy travels from molecule to another.  When one molecule receives energy it begins to vibrate and hits other molecules and makes them vibrate. And will spread throughout the object.

Convection – this will only occur in gases and liquids.  When heat is applied to the bottom of the substance, it will heat it up.  When it heats up, it will rise to the top, forcing colder areas towards the heat source and then they will receive energy and rise to the top, etc.

Radiation – it travels in waves.  When it hits a molecule it makes it vibrate.

I will be concentrating on conduction, as this is the main way in which thermal energy is transferred lost from housing.  Which means that I need something that is a bad thermal conductor (good thermal insulator)

...read more.

Middle

I think that the best thermal insulator will be the bubble wrap due to the fact that it contains trapped air.  Trapped air is a good insulator therefore it takes longer for energy to transfer through gasses because the molecules are further part, a vibrating molecule takes longer to hit into another molecule and make it vibrate.  The worst thermal insulator will be something that has compact molecules as it is easy for the vibrations to spread throughout.

...read more.

Conclusion

Evaluation

Although this experiment went well I felt that it could have been improved, for example. Having the same length and width of each material would have the experiment much better in fairness.  Also I was not able to repeat the experiment twice more due to lack of time which severely affected the accuracy of the results and investigation.  Finally having a thermometer for making sure the room temp stays the same

I think that the method was fine and has no problems of any sort except one:  testing the room temp and making sure it stays the same.

Conclusion

To conclude, this experiment was seemingly fair, however there is a margin for improvement.

The paper was the best insulator however I think this was an accident due to the trapped air.

I now know that the closer the molecules in an object the better the object is at conducting energy. Which means any thing with trapped air would be a sufficient insulator.  This is why they use double glazed windows as an insulator.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

4 star(s)

This is a well written and structured report.
1. The sources of information need to be referenced.
2. There are several pieces of information in the wrong section.
3. The evaluation should suggest further research opportunities.
****

Marked by teacher Luke Smithen 05/09/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Peer reviewed

    Investigation in resistance in wires

    5 star(s)

    me a clearer picture when plotting my results in a graph; the tested lengths were 20cm, 25cm, 30cm, 35cm, 40cm, 45cm, 50cm, 55cm and 60cm. I also lowered the differences in voltage: 0v, 0.5v, 1v, 1.5v, 2v, 2.5v, 3v, 3.5v, 4v, 4.5v and 5v I lowered the voltage because I

  2. To investigate which fuel gives out the most energy when burnt. We are burning ...

    The average of these results and my final result is: 137.6KJ/MOL * Ethanol This alcohol released 287.13KJ/MOL in the first experiment, and 276.65KJ/MOL in the second experiment. The average of these results and my final result is: 281.81KJ/MOL * Propanol This alcohol released 497.24KJ/MOL in the first experiment, and 360.09KJ/MOL in the second experiment.

  1. An in Investigation into the Resistance of a Wire.

    This shows me that if I am going to investigate in the relationship between the cross sectional area and the resistance I will need a larger range of readings in order to get a more accurate and reliable result and a larger range of wires.

  2. Resistance of a Wire Investigation

    Conclusion In my prediction I said that: if the length increases than the resistance will also increase in proportion to the length. From my graph I have shown that my prediction was correct, as the Line of Best Fit is a straight line proving that the resistance of the wire is proportional to the length of the wire.

  1. The resistance of wire.

    should be half the number of collisions between the electrons and the atoms. If the wire is twice as long, there should be twice the number of atoms, resulting in twice as many collisions and a predicted doubling of the resistance.

  2. Discover the factors affecting resistance in a conductor.

    This will result in a straight line on a graph that passes through the origin. I can confirm this because if no other factors affect the decrease in resistance, the decrease must be constant. I can draw a prediction graph to show this decrease, however I cannot predict what the

  1. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    Table of Results Number of turns Current (Amps) on the coil 1A 2A 3A 10 0g 0g 50g 20 0g 40g 70g 30 30g 80g 150g The table above shows the current and the number of turns I have used. The weights in the middle show how strong the electromagnet was in grams.

  2. Length vs Resistance

    On the other hand, a wire with a larger diameter would mean less resistance as there would be more space for electrons to pass through, resulting in the power source not having to work as much to push the electrons around the circuit.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work