• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

To burn a range of alcohols separately in air and measure the energy changes that take place.

Extracts from this document...

Introduction

Combustion of Alcohol Investigation Aim: To burn a range of alcohols separately in air and measure the energy changes that take place. Background Knowledge: Combustion is a chemical reaction between substances, usually including oxygen and usually accompanied by the generation of heat and light in the form of flame. The rate or speed at which the reactants combine is high, in part because of the nature of the chemical reaction itself and in part because more energy is generated than can escape into the surrounding medium, with the result that the temperature of the reactants is raised to accelerate the reaction even more Flames have a definable composition and a complex structure; they are said to be multiform and are capable of existing at quite low temperatures, as well as at extremely high temperatures. The emission of light in the flame results from the presence of excited particles and, usually, of charged atoms and molecules and of electrons. Combustion is one of the most important classes of chemical reaction, is often considered a climax phenomenon in the oxidation of certain types of substances. Although most flames have regions where reduction reactions are important, combustion is primarily the combining of combustible material with oxygen. The chemical processes in combustion are most commonly initiated by such factors as heat, light, and sparks. As the combustible materials achieve the ignition temperature specific to the materials and the ambient pressure, the combustion reaction begins. ...read more.

Middle

Mass (g) Initial Final Change Ethanol C2H5OH 46 0.99 200 21.5 31.3 9.8 Ethanol C2H5OH 46 1.01 200 21.5 30.2 8.7 Ethanol C2H5OH 46 1.02 200 22 33.5 11.5 Ethanol C2H5OH 46 1.02 200 22.5 33.1 10.6 Ethanol C2H5OH 46 0.99 200 22.3 34.3 12.0 Ethanol C2H5OH 46 0.99 200 21.6 32.8 11.2 Ethanol C2H5OH 46 1.01 200 20.5 30.8 10.3 Ethanol C2H5OH 46 1.02 200 22 31.8 9.8 Ethanol C2H5OH 46 1 200 22 31.1 9.1 Ethanol C2H5OH 46 1.03 200 23.25 31.5 8.2 Ethanol C2H5OH 46 1.02 200 22.5 30.9 8.4 Ethanol C2H5OH 46 0.99 200 22.9 33.4 10.5 Ethanol C2H5OH 46 0.99 200 22.5 32.6 10.1 Ethanol C2H5OH 46 0.99 200 23.5 34.4 10.9 Ethanol C2H5OH 46 1.01 200 21.5 32.8 11.3 Ethanol C2H5OH 46 1.01 200 21.5 34.0 12.5 Alcohol Water Temperature �C Name Formula RMM Mass (g) Mass (g) Initial Final Change Propanol C3H7OH 60 1 200 22 33.2 11.2 Propanol C3H7OH 60 1.02 200 21.75 32.7 10.9 Propanol C3H7OH 60 0.99 200 22.2 36.1 13.9 Propanol C3H7OH 60 1.02 200 22.5 34.3 11.8 Propanol C3H7OH 60 0.99 200 22.6 35.8 13.2 Propanol C3H7OH 60 0.98 200 21.6 34.0 12.4 Propanol C3H7OH 60 1.01 200 20.75 32.8 12.0 Propanol C3H7OH 60 1.01 200 22.5 33.8 11.3 Propanol C3H7OH 60 1.01 200 22 32.6 10.6 Propanol C3H7OH 60 1.01 200 23 34.9 11.9 Propanol C3H7OH 60 1 200 21.8 34.1 12.3 Propanol C3H7OH 60 0.98 200 22.5 33.9 11.4 Propanol C3H7OH 60 1.01 200 22.75 34.2 ...read more.

Conclusion

Also The fact that at higher temperatures, heat is lost faster to the air and out of the beaker, due to the bigger heat difference, making the higher temperatures more inaccurate, and making a shallower gradient on the graph. These factors could be avoided when repeating this experiment by using an advanced technique such as a bomb calorimeter. This is the most accurate way of measuring bond energies and this will be as accurate as we can get in our results. A diagram of a bomb calorimeter is shown below. Another factor, which could have effected our results, was incomplete combustion. This is when there is a limited supply of oxygen to carry out the reaction. This was shown by the fact that the alcohol was burning with an orange flame rather than blue. Some of the alcohol did not burn completely, carbon monoxide rather than carbon dioxide. If the oxygen supply is very limited then you get some atoms of carbon released before they can bond with any oxygen atoms. A carbon deposit (soot) on the bottom of the calorimeter indicated this. Since heat is given out when bonds form, less energy is given out by incomplete combustion. This would effect my results. I could overcome this problem by making sure that there is a good supply of oxygen for the reaction. For example using the bomb calorimeter pictured above. This would reduce incomplete combustion because air is pumped into it giving a good supply of oxygen. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. The Combustion of Alcohols and the factors affecting these reactions

    74 ?H3 = -613.38 kJ/mol of heat released Pentanol Q= ?H = 100 � 4.2 � 15 ?H1= 6300 for 0.70g of pentanol burned. = 6300 � 0.70 = 9000 J/g ?H2= 9.000 kJ/g n= 9.000 � 74 ?H3 = -792 kJ/mol of heat released Analysis: I have already discussed

  2. Experiment to Measure the Heat of Combustion of Butanol.

    Energy 2nd result (J) Average Energy Result (J) Butanol C4H9OH 74 -176471 -820092 -498281.5 Methanol CH3OH 32 -272727 -242308 -257517.5 Ethanol C2H5OH 46 -474911 -359996 -417453.5 Propanol C3H7OH 60 -318181 -141255 -229718 Pentanol C5H11OH 88 -825702 -------- -825702 Conclusion: I conclude that the higher the molar mass, the lower the average energy result is, making the alcohol more efficient.

  1. Investigating the Combustion of Alcohols

    During the experiment I had to make certain that all the factors which were not being tested were kept constant throughout to ensure fair testing and accuracy. Although I carried out the experiment to the best of my ability, heat losses in a combustion calorimeter are considerable and too great for accurate work as my experiment results show.

  2. Find out the heat of combustion in the five fuels; Methanol, Ethanol, Propanol, Butanol, ...

    x Temp change(c) x specific heat capacity(j) 30 26 1/2 4.2 = 3339 joules of heat transferred For I gram of Pentanol 13.81 13.035- 00.775 7308= energy given for I gram 0.775 3339 Energy transferred for 1 gram; The fuel Energy transferred for 1 gram In joules Methanol 1784 Ethanol

  1. Comparing the enthalpy changes of combustion of different alcohols.

    Any heat transfer from the copper can (calorimeter) to the water in the can will now not affect my results. * Replace the lid of the spirit burner to avoid evaporation of the alcohol and weigh the burner to find the mass of the alcohol that has been burnt.

  2. An experiment to investigate the factors that determine the amount of energy released when ...

    The word alcohol originally denoted any fine powder, but the alchemists of medieval Europe later applied it to essences obtained by distillation, and this led to the current usage. Alcohols have one, two, or three hydroxyl, -OH, groups attached to their molecules and are thus classified as monohydric, dihydric, or trihydric, respectively.

  1. Find out how much energy is required to burn methanol, ethanol, propanol and pentanol, ...

    Compared to a smaller molecule, methanol which requires less energy to do so and Pentanol produces more energy too. I can come to predict that the longer the molecular structure in the alcohol the more energy it will take to remove the bonds.

  2. Molar Heat of Combustion of Alcohols

    We average the mass of the water for each test and then use the more accurate averaged values to work out the molar heat more accurately. We will use gloves to carry the hot containers and wear goggles when using the burners Method: The method is very similar for both the preliminary tests and our real experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work