• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To determine the value of Faraday constant (quantity of electricity per mole) by using electrolysis of Copper.

Extracts from this document...

Introduction

1) Title: QN1 A Quantitative study of electrolysis 2) Aim/Objective: To determine the value of Faraday constant (quantity of electricity per mole) by using electrolysis of Copper. 3) Results: Before electrolysis: Weight of cathode = 2.164 g Weight of anode = 2.502 g After electrolysis: Weight of cathode = 2.237 g Weight of anode = 2.435 g Time of electrolysis = 20 minutes = 1200 seconds Ammeter reading = 0.19A 4) Calculation/interpretation: The equation of the electrolysis reaction at the cathode: Cu2+(aq.) + 2e- � Cu(s.) Gain in weight of cathode = 2.237g - 2.164g = 0.073 g Loss in weight of anode = 2.520 - 2.435g = 0.085 g No. of moles of loss in cupper anode = 0.085 / 63.5 = 0.00134 mol Quantity of electricity required = 0.00134 mol * 2 = 0.00268 mol Quantity of electricity supplied = 1200 * 0.19 = 228C Faraday Constant = quantity of electricity / no. ...read more.

Middle

ions might not be very soluble at that moment. After that, the copper electrodes were rinsed with propanone and heated under a Bunsen flame. Since propanone can remove grease or oil, this treatment could leash off the sebum which we have left on the electrodes when transferring them. Of course, when rinsing them by propanone, a pairs of forceps was used. After rinsing, the copper electrodes were warmed high on a Bunsen flame to evaporate propanone more quickly. However, they should be placed high above the Bunsen flame because propanone is flammable and a Bunsen flame can oxidize the copper plate, forming copper (II) oxide on their surface, which will finally lead to a heavier weight and smaller Faraday Constant. The value of the Faraday Constant was calculated to be smaller than the literature one (96500 Cmol-1) due to a number of errors. For instance, it was inevitable that the electricity supply was not exactly 0.19A in the time interval 20 minutes. ...read more.

Conclusion

This can explain why the gain in weight of the cathode and the loss in weight in the anode were not the same. So if the gain in weight of the cathode was taken into consideration, the calculated value of the Faraday Constant would be larger. After finding out the value of the Faraday Constant, the thickness of the metal plating can also be calculated. According to the formulae Density = Mass / Volume and Volume = Thickness * Surface Area, since the density of copper (8920kgm3), the surface area, the mass of copper formed are all known, the thickness of the plating can be known. It is actually calculated by: Mass / Density / Surface area. Such electrolysis process performed in this experiment is useful in electro-plating. It can plate a certain object by placing it on the cathode, and the metal to be plated onto the object will be put on the anode. 6) Conclusion: The Faraday constant was calculated to be 161000 C mol-1. ?? ?? ?? ?? Yu Wing Yee 6A(30) - 1 - ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Changing Materials - The Earth and its Atmosphere essays

  1. An experiment to show how electroplating using copper electrodes.

    There the electrons are passed on to the copper ions, Cu2+ (aq), from the copper II sulphate solution and the copper is deposited or copper plates on to the cathode. Copper ions + electrons --> copper atoms Cu2+ (aq) + 2e- --> Cu(s)

  2. The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

    Sulphate and massing them. The effect of Copper loss is more significant than that of excess water so it would be expected for the results to be slightly below what they should be. The excess water and loss of Copper deposits seem to balance out nicely in the average change in mass.

  1. Investigation into Electrolysis

    As the metal decreased in weight, our qualitative results see the build up of the metal on the carbon cathode, confirming that the metal was being electroplated onto the cathode. It would have been useful to have more accurate measurements so that comparisons regarding the amount of substance produced at a given voltage and time could have been made.

  2. Investigate the factors that affect the mass of Copper deposited on the Copper Cathode ...

    The cathode is then re-weighed and its mass is recorded and the amount of copper deposited at the cathode can then be calculated. This experiment should be carried out ten times. Each current 0.2A, 0.4A, 0.6A, 0.8A and 1.0A should be repeated once so the experiment gains in accuracy, so

  1. Investigating one of the factors that affects the mass of copper deposited when copper ...

    1 mole of electrons always has a charge of 96 500 coulombs. This, along with Faraday's laws will also help as to predict the results because once the charge has been found the moles of copper can also be found.

  2. Investigating how the amount of copper affects the mass of the cathode

    copper ions for the cathode to gain and change into pure copper. At the end of my experiment, I will accept the cathode to have gained the same amount of mass that the anode has lost. In addition, if I keep on increasing the amount of current that is applied

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work