• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To establish a reactivity series using voltage.

Extracts from this document...

Introduction

CHEMISTRY REACTIVITY SERIES SC1 Aim: To establish a reactivity series using voltage Theory: The reactivity series is like a 'league table' for metals. The most reactive metal is at the top and the least reactive is at the bottom. They are put in order by how they react with water, steam and acids. K Na Ca Mg Al Zn Fe Pb Cu Ag1 * A substance, which donates electrons and so, causes a reduction of another substance. The more reactive a metal the more metals it can displace, however the less reactive metals can displace less metals. Displacement is the reaction in which one element replaces another in a compound. As I said above an element can only displace an element that is lower than itself in the reactivity series. In the reaction below zinc displaces copper from the copper sulphate solution: CuSO4 + Zn Cu + ZnSO4 (ag) (s) (s) (ag) However if zinc had the sulphate then no reaction would take place: ZnSO4 + Cu No reaction (ag) (s) Also the reactivity of an element also can be measured as the metals electrode potentials (how readily an atom is willing to lose an electron to form an ion). ...read more.

Middle

Now magnesium is more reactive so it donates the electrons to the copper so the copper becomes a metal and magnesium becomes an ion, the result is a flow of electrons through the external circuit from the magnesium electrode to the copper electrode. This push is measured voltmeter. The greater the push, the greater the voltage. The greater the distance between the metals in the reactivity series, the greater the push and greater voltage. Plan: * Get the six metals: magnesium, zinc, aluminium and lead, copper, silver * The magnesium is the 'control' metal that always stays the same, against each metal * Set up the apparatus as shown in diagram * Attach the positive end to zinc, aluminium, silver, lead or copper. Also attach the negative end to magnesium * Read off the voltage of the voltmeter * Repeat experiment for each metal Diagram: Preliminaries: Pairs of metals (neg- pos) Voltage (V) (different Mg) Voltage (Same Mg) Magnesium- Zinc 0.3V 0.3V Magnesium- Silver 0.7V 1.0V Magnesium- Lead 0.5V 0.9V Magnesium- Aluminium 0.8V 0.4V Magnesium- Copper 0.3V 0.4V After doing my preliminaries I decided on the following criteria: * Wait till stable * Repeat experiment three times and get average * Use 20ml of solution, which will be changed every three times (every metal) ...read more.

Conclusion

As magnesium is releasing electrons the only one that can receive the electrons is Hydrogen, and thus a gas is released. Evaluation: I believe our first results where insufficient to back up my prediction because we were unsure what to do. Also we changed the magnesium every time. The magnesium will have been various sizes and may have reacted differently each time. Our second sets of results were a vast improvement they proved my theory. I believe that even though these results prove my theory they are still not entirely fair. This is because as we did the experiment I sanded the magnesium to remove any oxidation however I was not very precise and sometime removed all oxidation and other times did not. To improve my results I could rather than sanding the magnesium, which is unreliable, I could dip the Magnesium in to a solution of Hydrochloric acid to remove the oxidation. To gain a wider knowledge of the reactivity series I could do more metals and place them in the series. Also I could capture the gas released and measure how much is released rather than just doing it by eye. 1 Ref 1- The Usborne Illustrated Dictionary of Science Page 158 2 Ref 2- Nuffield Chemistry Page 250 diagram figure 14.4 Abigail Male 22nd May 2002 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Changing Materials - The Earth and its Atmosphere essays

  1. The aim of this experiment is to determine the order of the reactivity series ...

    Calcium Ca 2 Magnesium Mg 2 Aluminium Al 3 Carbon C 4 (non-metal) Zinc Z Transition Metal Iron Fe Transition Metal Tin Sn 4 Lead Pb 4 Hydrogen H (non-metal) Copper Cu Transition Metal Silver Ag Transition Metal Gold Au Transition Metal Platinum Pt Transition Metal The periodic table also shows which groups the metals belong to.

  2. Investigating The Reactivity Of The Metals Iron, Magnesium, Zinc, Copper And Calcium And Their ...

    * Now weigh the metals and divide their atomic mass by 100. This is to make sure that we are reacting the same amount of atoms. I will use: 1. 0.40g of calcium 2. 0.24g of magnesium 3. 0.56g of iron 4.

  1. Reactivity Series of Metals

    C + O2 CO2 2Mg + O2 2MgO Decompose in water very readily. E.g. 2Na + 2H2O(L) 2NaOH(aq) + H2(g) Decompose in steam at red heat Mg reacts very slowly with cold water and rapidly with steam. Mg + H2O(g)

  2. The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

    If this adjustment takes too long then the results will be affected. A ten second delay could be called minimal over a five minute period but this nevertheless adds to other inaccuracies. Sometimes during the course of the experiment in trying to maintain the current one could overcompensate momentarily.

  1. Extraction of Metals.

    is formed not titanium (similar reactions occur for vanadium, tungsten and molybdenum). This does not follow the trend in the extraction of metal, being more difficult to extract if it is a more reactive metal. Titanium has many uses for its expensive high-performance alloys.

  2. Thermal Decomposition of Metal carbonates

    Manganese is about as reactive as Magnesium. I think that Manganese lies just below Magnesium in the reactivity series, and above Aluminium. Evaluation I think that the Iron Carbonate being the metal which thermally decomposed the fastest was an anomalous result.

  1. Investigate the factors that affect the mass of Copper deposited on the Copper Cathode ...

    This was the 2nd result using the current 0.8A, where a mass of 0.26g was recorded as deposited on the cathode. The predicted amount of copper deposited on the cathode using the current was 0.32g, so as one can see there is quite a large difference between these two masses.

  2. The Reactivity of Metals

    Measure each metals weight in moles so that they all have the same amount of atoms in each metal.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work